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Titre : Incertitudes climatiques
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chastique économie-climat, approches spatiales

Résumé : J’étudie les incertitudes clima-
tiques et leurs impacts économiques. Dans le
premier chapitre, nous discutons des limites
et alternatives aux critères habituels de choix
social intertemporel. Si ces critères sont bien
adaptés aux risques standards, leur usage
devrait être discuté en présence de risques
irréversibles de changement de régime tels
que les points de basculement climatiques,
où le risque agrégé sur le bien-être des gé-
nérations présentes et futures est important.
En effet, ces modèles font l’hypothèse que le
planificateur est neutre vis-à-vis de ce risque
agrégé. Au contraire, nous montrons qu’in-
troduire de l’aversion temporelle au risque
agrégé implique une augmentation impor-
tante du coût social du carbone (SCC) en pré-
sence de risques catastrophiques irréversibles
de points de basculement. Dans le deuxième
chapitre, nous décomposons le module cli-
matique des modèles économiques pour ana-
lyser et quantifier comment les interactions
dynamiques entre le risque climatique glo-
bal et des sous-systèmes climatiques affectent
la politique climatique mondiale et la gestion
régionale de ces sous-systèmes. Nous appli-
quons notre cadre théorique au sort contro-
versé de la forêt amazonienne. Notre ap-
proche aboutit à deux résultats méthodolo-
giques clés. Premièrement, le SCC doit inclure
l’impact qu’a une augmentation marginale
des émissions cumulées à l’échelle mondiale
sur la dynamique de la forêt amazonienne.
Cela inclut à la fois une mise à l’échelle
des politiques actuelles en tenant compte des
émissions de carbone de la forêt amazonienne
sous un climat changeant, ainsi qu’un canal
d’assurance, le « beta amazonien », car la va-

leur sociale des émissions de carbone varie se-
lon les états du monde dans lesquels elles se
produisent. Deuxièmement, la valeur sociale
de la forêt amazonienne en tant que stock de
carbone ne peut se réduire à la quantité de
carbone qu’elle contient : le coût social du
système dynamique est également important,
c’est-à-dire le coût d’une diminution margi-
nale dans l’état du sous-système qui réduit sa
capacité à se perpétuer. Dans le troisième cha-
pitre, nous quantifions dans quelle mesure
l’agrégation spatiale et temporelle des don-
nées de température lors de la projection des
impacts climatiques futurs pourrait masquer
les incertitudes scientifiques entre les pro-
jections climatiques et sous-estimer les dom-
mages climatiques futurs. Dans le quatrième
chapitre, je quantifie l’impact des canaux bio-
physiques (albédo, évapotranspiration, rugo-
sité) sur la distribution et les impacts agrégés
du changement climatique sur le bien-être le
long du scénario SSP2-4.5 à l’échelle globale
et à une résolution de 1° grillée. Ces canaux
sont endogènes aux activités économiques ré-
gionales en raison des changements d’utili-
sation des terres agricoles et urbaines et ils
interagissent avec les stratégies d’adaptation
comme la migration ou le changement struc-
turel. En conclusion, ma thèse suit trois direc-
tions : documenter les conséquences écono-
miques des incertitudes climatiques, contri-
buer méthodologiquement à l’étude de l’in-
certitude à l’interface des systèmes humains
et naturels, et enrichir la littérature sur le
choix social normatif intertemporel avec des
modèles numériques utilisés pour la quantifi-
cation.
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Abstract : I study climate uncertain-
ties and their economic impacts. In the
first chapter, we discuss the limitations
and alternatives to the standard crite-
ria for intertemporal social choice. While
these criteria are well-suited for standard
risks, their use should be reconsidered
in the presence of irreversible regime-
shift risks, such as climate tipping points,
where the aggregate risk to the welfare
of present and future generations is si-
gnificant. Indeed, these models assume
that the planner is risk-neutral regarding
this aggregate risk. In contrast, we show
that introducing risk aversion over time
significantly increases the social cost of
carbon (SCC) in the presence of irrever-
sible catastrophic tipping point risks. In
the second chapter, we decompose the
climate module of economic models to
analyze and quantify how the dynamic
interactions between global climate risk
and climate subsystems affect global cli-
mate policy and the regional manage-
ment of these subsystems. We apply our
theoretical framework to the controver-
sial fate of the Amazon rainforest. Our
approach yields two key methodological
insights. First, the SCC should include
the impact that a marginal increase in cu-
mulative global emissions has on the dy-
namics of the Amazon rainforest. This in-
cludes scaling current policies to account
for carbon emissions from the Amazon
under a changing climate, as well as
an insurance channel—the "Amazonian
beta"—as the social value of carbon emis-

sions varies according to the states of
the world in which they occur. Second,
the social value of the Amazon rainfo-
rest as a carbon stock cannot be redu-
ced to the quantity of carbon it contains ;
the social cost of the dynamic system is
also crucial, that is, the cost of a mar-
ginal decline in the state of the subsys-
tem that reduces its capacity to persist. In
the third chapter, we quantify the extent
to which the spatial and temporal ag-
gregation of temperature data in climate
impact projections might obscure scienti-
fic uncertainties between climate projec-
tions and underestimate future climate
damages. In the fourth chapter, I quantify
the impact of biophysical channels (al-
bedo, evapotranspiration, roughness) on
the distribution and aggregate impacts
of climate change on welfare along the
Shared Concentration Pathway SSP2-4.5
at a global scale and at 1° resolution.
These channels are endogenous to regio-
nal economic activities due to land use
changes from agriculture and urbaniza-
tion, and they interact with adaptation
strategies such as migration or structu-
ral change. Thus, my dissertation follows
three directions : documenting the econo-
mic consequences of climate uncertain-
ties, contributing methodologically to the
study of uncertainty at the interface of
human and natural systems, and enri-
ching the literature on intertemporal nor-
mative social choice through numerical
models used for quantification.
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Introduction

Public debate about climate change has fortunately shifted from questioning
its anthropogenic origins to discussing its potential magnitude, its impacts on
economic growth and welfare, and the most efficient adaptation and mitigation
strategies given debated ethical principles. Because of economic, physical, and
scientific uncertainties and their interactions, society faces a spectrum of possible
futures across time and space, across scientific models, and within a given mo-
del, necessitating informed decision-making. But it is precisely these uncertain-
ties that make decision making more complex. Our inclination often skews to-
wards one end of this spectrum : for instance, techno-optimists favor best-case
scenarios on the left of the distribution, while collapsologists focus on worst-case
outcomes on the right. I believe that such polarized views are not reasonable
guides for public action. This thesis advocates for a comprehensive approach,
considering the entire distributions rather than focusing on a single aspect of
risk, a specific scientific model, a particular location, or a moment in time. By
encompassing the full range of possible distributions across time, space, risk, and
scientific uncertainty, we lay the backbone of models that incorporate the best
available scientific knowledge. On this foundation, decisions can then be made,
accounting for temporal and risk preferences, as well as aversion to inequalities,
which should be publicly debated. In this way, we can sequence the decision-
making process and adopt a two-step approach that explicitly differentiates
the object from our attitude towards it : separating risk within models from our
aversion to risk, scientific uncertainty between models from our aversion to scien-
tific uncertainty, and the distribution of possible futures in time and space from
our aversion to intra- and inter-temporal inequalities.

Box 1 - stochastic risk and scientific uncertainty

What is usually referred to as risk encompasses two different concepts : stan-

dard risk, where probabilities associated to each possible future states of the world

are known, and uncertain (ambiguous) situations, i.e. situations in which there is
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no unanimous probability assignment due to insufficient information or compe-

ting datasets, models, or expert opinions.

1 Four dimensions : time, space, risk and scientific

uncertainty

Defining the spatio-temporal spectrum of possible futures, accounting for sto-
chastic risk within models and scientific uncertainty between models, is challen-
ging due to uncertainties in each dimension and their dynamic interactions. Be-
fore detailing these challenges and presenting my contributions to addressing
them, I offer this personal perspective on climate policy : the significant magni-
tude of these uncertainties should inspire humility and lead us to favor minimal
disruption of systems beyond our control. While my study focuses on climate
change, perturbations of other planetary limits are also a significant concern. The
average scenario of future economic damage should not be the only guide to
action : it is the deep uncertainty about the earth system’s reaction to our distur-
bances that should drive us to take the most decisive actions in the short term.
In the medium term, we can hope to reduce the cost of our intense mitigation ef-
forts by further exploring and reducing these uncertainties. In other words, I do
not believe that the worst should be disregarded simply because it is not certain,
nor do I believe that the worst is certain simply because it is possible. However, I
do lean towards the cautious approach of considering the worst-case scenarios
more seriously, both in their modeling and in our attitude towards them.

1 Time

Time is a crucial dimension of the climate issue, raising two main challenges.
The first challenge, recognized since at least Frank Ramsey’s time, involves sol-
ving problems with long or infinite time horizons, presenting both ethical and
numerical difficulties. In normative settings, the practice of pure time discoun-
ting is still commonly used, a practice that is ‘ethically indefensible and arising
merely from the weakness of the imagination’ (Ramsey, 1928). Numerical optimi-
zation of present and future generations’ welfare is often achieved at the expense
of unequal treatment of these generations. In positive settings, e.g. in spatial in-
tegrated assessment models (Cruz and Rossi-Hansberg, 2024), the challenge of a
long horizon is sidestepped by assuming a stationary equilibrium and the conver-
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gence of fundamentals for model closure, a bold assumption with no empirical
foundation. The second problem, less frequently discussed in economics due to
simplifications in system modeling, often using fixed stock depletion models, is
the impact of the passage of time on the dynamics of these systems due to tempo-
ral autocorrelation. The climate system and its components, disrupted by human
activities, have for instance their own independent dynamics due to feedback ef-
fects, inertia, or nonlinearities that can generate abrupt and qualitative changes
in their regime (Ritchie et al., 2021) simply by the passage of time.

Box 2 - The Economics of Climate Tipping Elements

Tipping elements are large-scale components of the Earth system that may

pass a tipping point. A tipping point is a critical threshold at which a tiny pertur-

bation can qualitatively alter the state of the system (Lenton et al., 2008). Examples

of tipping elements include the Amazon rainforest, the Greenland ice sheet, or

the Atlantic Meridional Overturning Circulation, which might be classified by the

Earth domain to which they belong : respectively biosphere, cryosphere or the

ocean and atmosphere.

FIGURE 1.1 – Climate tipping elements. Illustration taken from (Armstrong McKay
et al., 2022).
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2 Space

Space is another essential dimension of the problem, as the impacts of climate
change and the capacity to mitigate and adapt are highly heterogeneous across
different regions over time. This dimension raises a major challenge : spatial ag-
gregation. The increasing granularity available in gridded socio-economic and
climate data allows for a better understanding of phenomena at different scales.
However, this finer granularity can pose three main problems. First, some phe-
nomena may be non-linear on a micro scale but linear on a macro scale, and vice
versa (Burke et al., 2015). The second problem is the explosion in the dimension of
numerical problems when the number of locations is increased, especially if deci-
sions in one location influence all the others (Desmet and Rossi-Hansberg, 2024).
Finally, the third problem is spatial autocorrelation, which becomes increasingly
problematic as granularity increases (Hsiang, 2016). Space and time interact, rai-
sing additional challenges, such as the articulation of inter- and intratemporal
inequality, or the interaction of spatial and temporal autocorrelations, which can
lead to propagating effects that are harder to estimate, more unstable to predict,
and more complex to model and calibrate.

I believe that we need to move back and forth between the stylized and
the detailed, constantly ensuring that our acceptance of the stylized as a good
first approximation holds when we introduce other aspects of the problem or
when we change the scale. For instance, the cumulative stock of global emis-
sions is probably a good first approximation when considering the seminal DICE
model and its global scale (Nordhaus, 2008). But once we disaggregate spatially
to examine the distributional impacts of climate change as in the recent quanti-
tative spatial literature, I believe that we should consider other mechanisms, for
instance impacts of biophysical channels via land use and land cover changes on
regional climates, as these mechanisms bring nonlinearities in the earth-human
interactions and interact with the first-order climate change adaptation strate-
gies usually modeled, such as migration and population concentration, change
in trade patterns and relative prices or regional structural change.

Box 3 - Biogeochemical and biophysical climate impacts

At the local and regional scales, land use land cover changes such as urba-

nization or transition from and to croplands have impacts on regional climates

because of biophysical channels (Masson-Delmotte et al., 2019). Examples of

biophysical channels are changes in albedo, changes in evapotranspiration, or
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changes in roughness. Albedo is the fraction of solar radiation reflected by a

surface. Evapotranspiration is the combined process of evaporation from the

Earth’s surface and transpiration from vegetation. Roughness length refers to the

measure of a surface’s roughness, which influences how air moves above that

surface. These changes in regional land conditions affect regional climate. Authors

from the burgeoning spatial integrated assessment modelling literature (Desmet

and Rossi-Hansberg, 2024) omit these mechanisms in their assessments of climate

impacts : they focus on the biogeochemical channel of global cumulative carbon

emissions from which they infer local impacts with time-invariant downscaling.

FIGURE 1.2 – Biophysical climate impacts of human activities. Illustration taken
from Masson-Delmotte et al. (2019).

3 Risk

Risky social situations are those in which the probabilities of events’ occur-
rences are known; that is, the whole distribution of future possible states of the
world is known but the event is not deterministic. Incorporating stochastic risk
in the frameworks raises four main challenges.

First, it is challenging to calibrate and define risk. The notion can encompass
various concepts : for instance parametric risk, such as the true value of tran-
sient climate response to cumulative emissions, differs from trajectory risk, which
stems from multiple possible realizations from a model with perturbed initial
conditions (Rising et al., 2022). A standard representation of economic and cli-
mate risk in the macroeconomics literature, e.g. in Hong et al. (2023), represents
volatility with possible reversible jumps along a smooth economic trend and re-
presentative concentration pathway, with Poisson and Wiener processes, rather
than considering more abrupt regime changes, nonlinearities and catastrophes.
And yet, some climate risks have been characterized by climate scientists, such
as the risk of climate tipping points. We know too much about these tangible
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risks to be fully satisfied by the modelling of generic catastrophic or extinction
risks : Ritchie et al. (2021) suggest reduced-form equations for these systems as
a first approximation. Caracterizing the catastrophe as an emergent property of
the dynamic system rather than defining a probability of collapse ad hoc can teach
us a lot about optimal economic policy. This requires interdisciplinary work that
should go beyond using climate model outputs (Folini et al., 2024) but would
incorporate credible geophysical mechanisms and processes (Dietz et al., 2021),
even reduced-form.

A second challenge is the multiple sources of climate and economic risk that
interact across space and time, a correlation that might increase or decrease ag-
gregate risk. For instance, regarding climate risks, various climate subprocesses
have dynamics that interact in different ways with global climate change and
macroeconomic activity. These subprocesses have diverse insurance values (Le-
moine and Rudik, 2017; Dietz et al., 2018). In the table below, I reproduce data
from Armstrong McKay et al. (2022) on tipping elements, their warming thre-
shold and the sign of the feedback they might have on global or regional climates
(in °C). Some tipping elements reduce the temperature, but this decrease in ave-
rage temperature does not have the same impact depending on the threshold at
which the tipping point is triggered. Equivalently, tipping elements that bring a
positive feedback on climate, i.e. further increase temperature, at low warming
threshold do not have the same value as tipping elements that increase the tem-
peratures at high temperatures, without even considering the expected value of
the impact from the tipping element. One could also consider the precise mecha-
nisms by which the tipping points are triggered and their timescales of occurence
once triggered. This correlation also matters for systems with non-tipping beha-
vior, for instance the south-eastern asian rainforest, that stores and releases car-
bon. The social planner might have aversion to this correlation, which means for
instance that the planner might put more weight on subprocesses that have the
largest impacts on intertemporal welfare in the states of the world where inter-
temporal welfare is low.
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Tipping element Warming
threshold

Sign of impacts

Boreal Permafrost (abrupt thaw) <2°C +
Greenland & West Antarctic Ice Sheets <2°C +
Barents Sea Ice <2°C +
Labrador-Irminger Seas / SPG Convection <2°C -
Amazon Rainforest 2-4°C +
East Antarctic Subglacial Basins 2-4°C +
Mountain Glaciers 2-4°C +
Sahel and W. African Monsoon 2-4°C +
Boreal Permafrost (collapse) ≥ 4°C +
Arctic Winter Sea Ice ≥ 4°C +
Boreal Forest (northern expansion) ≥ 4°C +
East Antarctic Ice Sheet ≥ 4°C +
Atlantic Meridional Overturning Circulation ≥ 4°C -
Boreal Forest (southern dieback) ≥ 4°C -

TABLE 1.1 – Table of Tipping Elements, Warming Thresholds, and sign of impacts
(in °C), taken from Armstrong McKay et al. (2022)

A third challenge is the resolution of risk over time and the possibility of lear-
ning. When calculating welfare impacts, should we assume that the future risk
distribution will likely narrow around its mean over time, and should the social
planner have a preference with respect to the resolution of risk over time? These
preferences with respect to temporal resolution of risk and uncertainty underlie
most recursive models (Kreps and Porteus, 1978; Strzalecki, 2013), and interact
with temporal and atemporal risk and uncertainty aversions (Stanca, 2023) in
ways that are often overlooked in applied research.

The last challenge is to take risk seriously, which means defining optimal so-
cial choice under true stochastic risk, i.e. settings in which the decision maker
acknowledges the full set of possible future trajectories in every period, rather
than averaging over deterministic realizations à la Monte Carlo (Crost and Trae-
ger, 2013; Lemoine and Rudik, 2017). This raises numerical challenges, as there is
currently no global solution for solving optimization problems with more than a
few state variables, depending on the complexity of the dynamics and risk (Cai,
2019; Cai and Lontzek, 2019). On the one hand, recent advances using deep neural
networks (Azinovic et al., 2022; Friedl et al., 2023) might raise ethical questions,
if the underlying social choice criterion is not explicit. On the other hand, pertur-
bation methods (Van den Bremer and Van der Ploeg, 2021; Bilal, 2023; Bilal and
Rossi-Hansberg, 2023) are only adapted for small risks around the equilibrium
solution.
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4 Scientific uncertainties

Uncertain scientific situations are those in which there is no unanimous proba-
bility assignment due to insufficient information or competing datasets, models,
or expert opinions (Berger and Marinacci, 2020). This uncertainty differs from
standard stochastic risk, as does its potential resolution over time. The difficulty,
however, is calibrating the resolution of scientific uncertainty in a world where
scientific progress is non-linear and scientific theories are under-determined (Quine,
1970). For economic policy, it is crucial to consider scientific disagreements wi-
thin a single framework, as optimal social choice is usually not the average of
optimal choices made based on competing models. We could even delve deeper
and consider the reasons why individuals agree or disagree (Bommier et al., 2021)
rather than focusing only on the outcome. This scientific uncertainty matters es-
pecially for debated catastrophic risks. For instance, while it is often assumed
that the probability of catastrophic events is known and unanimously accepted,
there are fierce scientific debates about their likelihood of occurrence, their times-
cale once triggered, their consequences, etc. (Armstrong McKay et al., 2022). The
IPCC articulates quantitative and qualitative judgements of confidence on these
assertions ; we could imagine taking both of them into account in our decisions
(Bradley et al., 2017).

5 This thesis

I first worked on climate uncertainties because I believed they could shape the
way we define mitigation and adaptation policies. Then, I realized that studying
dynamic systems with risky and uncertain dynamics at the earth-human inter-
face can come with methodological advances for the field of economics. Finally,
I discovered that examining these climate risks and uncertainties could provide
new insights into how we should approach normative social choice in economics,
particularly in intertemporal contexts. Thus, my thesis follows three directions :
documenting the economic consequences of climate uncertainties, contributing
methodologically to the study of uncertainty at the interface of human and natu-
ral systems, and enriching the literature on normative intertemporal social choice
with numerical models for quantification. To contribute to this literature, I in-
vestigate alternatively the different dimensions highlighted above and navigate
between normative and positive approaches, each with its own advantages, di-
sadvantages, and assumptions.
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Dimension Chapter 1 Chapter 2 Chapter 3 Chapter 4
Time
Space
Risk
Scientific uncertainty

TABLE 1.2 – Correspondence between the four dimensions and my chapters

Black indicates that the dimension is the main focus of the chapter while gray indicates
that the chapter addresses but does not focus on the dimension.

2 Climate policies : normative and positive approaches

1 Normative approaches

The Brundtland Commission of the United Nations provides a framework
that prompts more questions than actionable guidance : ‘sustainable develop-
ment is development that meets the needs of the present without compromising
the ability of future generations to meet their own needs’. Meeting this criterion
across all four dimensions highlighted above is theoretically and numerically
challenging. Indeed, each dimension involves ethical considerations crucial for
social choice.

First, in the temporal dimension, we must decide how much consumption to
sacrifice today for future welfare. This extends to a deeper trade-off involving
the social value of reducing catastrophic risks : how much consumption should
we forgo today to lower the probability of an uncontrollable climate catastrophe
tomorrow (Bommier et al., 2015)?

Second, in the spatial dimension, there are existing inequalities within and
between countries that we may wish to address, such as inequalities in green-
house gas emissions (cause) and disparities in exposure to climate impacts (conse-
quence). For political economy reasons, such as the assumed impracticality of
global wealth transfer programs for income equalization across regions without
having been tried, economists have often chosen utility weighting, like Negishi
weights (Nordhaus and Yang, 1996). In my view, this approach reflects a lack of
imagination similar to that seen in pure time discounting. These spatial inequa-
lities interact with temporal inequalities, as future generations may be wealthier
on average, but today’s richest are richer than tomorrow’s poorest, depending on
assumptions about climate impacts and future total factor productivity growth.

Third, there are inequalities in risk exposure (Beck, 1986). A key ethical ques-
tion in risky contexts is whether to prefer ex-post catastrophe avoidance (a pre-
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ference for concentrating the distribution of catastrophes, such as deaths from
climate disasters) or ex-ante risk equity (a preference for equalizing the probabi-
lity of dying across agents), two conflicting concepts (Keeney, 1980; Bernard et al.,
2018). Whatever the ethical stance taken between these two options, incorpora-
ting risk exposure implies that the policy question becomes an ex ante issue, and
not just an ex post redistribution issue if and once the risk has materialized, as is
the case with the compensation for natural disasters from the Federal Emergency
Management Agency in the USA.

Fourth, the same question arises concerning unequal exposure to scientific un-
certainty (Blicharska et al., 2017). This reflects the scientific community’s lack of
interest in certain research questions, a scarcity of data and fewer climate scien-
tists and economists outside OECD countries and China. Furthermore, faced with
scientific uncertainty, scientific research and economic policies try to make the
environment more predictable for economic agents, but this effort might have a
distributional effect if some agents benefit from scientific uncertainty. Unequal
exposure to scientific uncertainty raises the question of the distributional effects
of the resolution of this uncertainty.

2 Positive approaches

Even though the distinction between normative and positive approaches is
somewhat overplayed, as value judgments are always involved, certain elements
do not directly relate to a social choice criterion, even if they guide it. This is
the case with our hypotheses about agents’ adaptation to climate change, future
growth, and so on. Social choice optimization models, due to the complexity of
solving high-dimensional problems with risk, have often chosen not to model
adaptation explicitly. This is a significant assumption and is subject to some form
of Lucas’s critique. Recent spatial Integrated Assessment Models (IAMs) are evol-
ving to model agents’ migration, changes in economic specialization, and other
adaptations endogenously (Desmet and Rossi-Hansberg, 2024). However, they
deviate from the social planner’s ethical framework that maximizes social wel-
fare, shifting the focus to impact scenarios. This represents a significant loss when
considering optimal policy today because the optimal choice criterion is not ex-
plicit. Indeed, optimization is not global but arises merely from the combinations
of many decentralized choices from rational agents driven by perfect forward-
looking expectations and utility maximization.

The notable challenge in this positive approach, strongly highlighted by Pop-
per (1945), is historicism in the social sciences : ‘Let it suffice for me to say that
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by [historicism] I mean a theory, affecting all the social sciences, which makes
historical prediction its principal aim, and which teaches that this aim can be
achieved if one discovers the ‘rhythms’ or ‘patterns’, the ‘laws’, or the ‘general
tendencies’ which underlie historical developments’. This relates to the criticism
of most economists assuming ergodicity of socioeconomic processes, an anhisto-
ric assumption according to North (2005). This is the trap that modeling economic
behavior such as climate adaptation and extrapolating past weather impacts into
future climate impacts can lead us into. The first issue is claiming to identify laws
in the social sciences and projecting them for prospective modeling. The second
issue is the political power of these so-called laws that might be dubious, gene-
rating false oppositions among proponents of similar solutions. This might arise,
for instance, in the hypothesis of future economic growth in total factor producti-
vity (TFP) being exponential, whereas recent work suggests it is additive (Philip-
pon, 2022). Digging deeper into these positive assumptions could help reconcile
certain views between green growth and degrowth, without resorting to strong
ethical positions, such as strong preference for redistribution and strong aversion
to risk, or an overestimation of catastrophic climate risks compared to other pos-
sible states of the world. Regarding the merits of these positive approaches in the
economics of climate change, I remain cautious even though I adopt them, be it
by scientific conformism or due to their appeals, the main ones being the gro-
wing availability of rich gridded datasets, the attempt to start answering Lucas’s
critique and the numerical tractability of high-dimensional positive problems in
comparison to the global solution methods applied to normative intertemporal
optimization frameworks.

3 Thesis description

How do the uncertainties arising from these four dimensions (time, space,
risk, scientific uncertainty) affect optimal social choice at the Earth-Human in-
terface? The first two papers of my thesis are normative and focus on defining
optimal policy within dynamic stochastic optimization models that account for
endogenous climate change. This approach feeds discussions on choosing a ra-
tional and consistent intertemporal social choice criterion when dealing with ir-
reversible catastrophic risks (Project 1) and modeling the uncertain dynamics of
Earth subsystems and their interactions with the macroeconomy and aggregate
climate uncertainty (Project 2).
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1 Time, risk and scientific uncertainty

In the first chapter, we develop a dynamic stochastic climate-economy model
(Cai and Lontzek, 2019) to examine and quantify a critical assumption in the stan-
dard model used to define optimal climate policy : temporal risk-neutrality under
discounted expected utility. How does this assumption hold when society faces
large, irreversible risks such as climate tipping points, e.g., Amazon rainforest
dieback, Greenland Ice Sheet disintegration (Lenton et al., 2008)? Once a tipping
point is crossed, the welfare of all subsequent generations is adversely affected
and positively correlated. Just as a risk-averse portfolio manager considers the
aggregate risk of a portfolio rather than summing individual asset risks—because
positive correlations among asset risks increase overall risk—it may be optimal
for a social planner to put more weight on social situations where aggregate risk
bearing on intertemporal utility is large, for instance if the welfare of different
generations is low and positively correlated. The social planner under additive
expected utility does not put more weight on this aggregate risk bearing on in-
tertemporal utility. We employ risk-sensitive social preferences (Bommier et al.,
2017), which are well-behaved and monotone with respect to first-order domi-
nance, unlike the Epstein-Zin-Weil framework, and compare optimal policy un-
der this criterion to the standard expected utility model, both analytically and
numerically. Our numerical results show that temporal risk aversion leads to a
30% increase in the social cost of carbon (SCC) for a large 10% irreversible rise in
economic damage from climate change. Assuming temporal risk neutrality is not
benign for climate policy, particularly if we anticipate significant damage from
catastrophic events, as the SCC rises sharply with the level of damage. If one be-
lieves that major catastrophes bearing large multiplier effects such as irreversible
regime shifts are possible, aversion towards those risks bearing on intertemporal
utility should be accounted for. On the other hand, if there is no such risk or if the
possible damage is low, then we should stick to the additive model as it does not
come with the ethical drawbacks catastrophe aversion bears.

A limitation of our approach is that it is stylized, especially the modelling of
a generic tipping risk. We did not model a tipping element and its dynamics, as
well as the consequences of a climate risk, instead representing it as a stochastic
process with an irreversible jump. My aim was to develop a model that provides
a more accurate representation of climate uncertainties with an explicit calibra-
tion. Specifically, I wanted the catastrophic outcome to be an emergent property
of the dynamic system, rather than an ad hoc specification, in line with bifurcation
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theory (Ritchie et al., 2021). Furthermore, I intended to study the interaction of a
specific catastrophic climate risk with aggregate climate risk impacting intertem-
poral welfare within a framework that incorporates scientific uncertainties.

In the second chapter, we examine how economists’ simplified models of cli-
mate uncertainties can distort optimal economic policy, particularly when consi-
dering Earth’s subsystems. These subsystems have three key characteristics. First,
global climate change affects their dynamics. Second, these subsystems impact
global climate change. Both effects that can be either positive or negative. Third,
the dynamics of these subsystems are not solely a linear function of climate change ;
they also involve inertia, self-sustaining processes, or feedback effects. Examples
include climate tipping elements and subsystems without tipping behavior, such
as the South-Eastern Asian rainforest. The interactions between these subsystems
and global climate change are stochastic in nature. A central question for econo-
mists is to determine if and how the idiosyncratic risks associated with these sub-
systems affect aggregate climate risk and intertemporal welfare. We analytically
explore the channels through which these interactions influence optimal climate
policy. Additionally, we investigate how regional management of these subsys-
tems could be guided by a reduced-form representation of their geophysical dy-
namics. We apply our framework to a calibrated quantitative model of the Ama-
zon rainforest, a subject of intense debate. Aside from standard risk scenarios,
where future state probabilities are known, there are substantial scientific uncer-
tainties concerning both subsystem dynamics and their interaction with global
climate change, due to competing datasets and climate models. Decision theory
offers tools to integrate these uncertainties into our social choice criterion. The
methodological approach in this paper involves solving an optimization program
with a state variable that exhibits curvature due to tipping risks in rainforest dy-
namics, using simplicial Chebyshev polynomials for value function approxima-
tion on parallel CPUs (Cai, 2019). Our approach yields two key economic insights
to the literature on tropical deforestation (Balboni et al., 2023). First, the social
cost of carbon (SCC) must account for the effects of a marginal increase in global
cumulative emissions on the dynamics of the rainforest. This includes adjusting
current policies for carbon releases from the Amazon rainforest under changing
climate conditions and incorporating an ‘Amazon beta’ insurance channel, as the
social value of carbon releases varies depending on the state of the world where
they occur. Second, the social value of the Amazon rainforest as a carbon sink
should not be limited to its current carbon content alone ; the social cost of the
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dynamic system (SCDS) is also crucial. This cost reflects the marginal decrease
in the subsystem’s state due to its diminished capacity for self-regulation. These
insights lead to two important policy implications. First, the social cost of car-
bon should be increased to reflect the impact of global marginal emissions on
the Amazon rainforest, which further releases carbon. This adjustment ensures
that emitters worldwide compensate for the welfare impacts of their emissions.
In our benchmark calibration, this adjustment yields a 15% increase in the stan-
dard SCC. The disparity between standard SCC and SCC with endogenous Ama-
zon feedback could be leveraged to fund coasian ecosystem service payments for
rainforest preservation in a double dividend perspective. Second, the valuation
of a hectare of rainforest should include not only the standard SCC but also the
Amazon-augmented SCC and a share of the SCDS. A reduction in forest cover
impacts welfare both directly, through carbon release, and indirectly, by affecting
future subsystem dynamics. In our benchmark calibration, the SCDS represents
16% of the standard SCC. Our theoretical framework can thus be applied to local
cost-benefit analyses of deforestation and complements recent advances in quan-
tifying carbon storage using satellite observations. Thus, in our best guess, we
estimate that a 24% increase in the marginal value of a tCO2 stored in the rainfo-
rest should be applied in local cost-benefit analysis, for instance for infrastruture
projects in Brazil. We believe that our analytical approach applied to the quan-
titative model of the Amazon rainforest could also be applied to other dynamic
geophysical systems to inform policy decisions at both global and regional levels.

The normative approach has limitations, as it becomes intractable when the
complexity of the dynamic stochastic optimization problem increases. As a result,
analyzing distributional effects of climate change, such as including numerous
regions or accounting for individual agent adaptations, becomes impractical. A
positive approach that dispenses with social choice might be the way forward on
these issues until high-dimensional optimization methods become tractable and
accessible without message passing interface on high performance clusters.

2 Time and space

How do the uncertainties arising from the four dimensions highlighted
above (time, space, risk, scientific uncertainty) affect our estimations of climate
impacts at the Earth-Human interface? While the approach in the two first pa-
pers of my thesis is stylized and global in scale, focusing on modeling stochas-
tic risk and its impact on optimal policy, the second part of my thesis addresses
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the spatial dimension of climate uncertainties. I aimed to work with increasingly
available gridded climatic and socio-economic data, which can provide valuable
insights into the economic impacts of climate change. In chapter 3, we analyze the
aggregation of these data over time and space. In my fourth chapter, the job mar-
ket paper, I develop a dynamic sectoral spatial equilibrium model and apply it to
1° gridded data to quantify the nonlinear impact of omitted biophysical channels
(albedo, evapotranspiration, and surface roughness), driven by land use and land
cover (LULC) changes, on regional climate impacts and adaptation decisions.

In the third chapter, we demonstrate how the current aggregation of climate
and economic data to compute annual global dose-response functions can obs-
cure some climate uncertainties between climate models and skew our estimates
of climate impacts. This global annual approach is commonly used in both stan-
dard climate-economy models and newer quantitative spatial models. We em-
ploy downscaled and bias-corrected regional climate projections of daily mean
temperatures and combine them with empirically estimated global and regional
dose-response functions of GDP growth rates to daily mean temperature levels.
We disentangle how much of the missing impacts are due to heterogeneous war-
ming versus heterogeneous damage patterns across space and time for various
shared socio-economic pathways (SSPs). Accounting for the shift in the entire
distribution of daily mean temperatures at the regional scale reveals that global
damages in 2050 could be around 25% higher. Differences in the shape of daily
temperature distributions between climate models transform standard risk ran-
kings based on temperature anomalies and increase uncertainty across climate
models. Differences in the shape of daily temperature distributions also affect the
geography of future climate impacts, with a lot of damages that have been so
far overlooked because of the spatio-temporal agregation procedure, especially
in continental areas from the northern hemisphere.

In the fourth chapter, I contribute to the growing literature in spatial eco-
nomics which models economic activity at the regional scale using spatial data,
particularly in assessing the economic impacts of climate change (Desmet Rossi-
Hansberg, 2024). This literature reveals significant uncertainty regarding the in-
teraction between economic activity and climate change. Some of this uncertainty,
such as linear downscaling from global climate change to local impacts, can be
addressed with Monte Carlo approaches. However, some uncertainty is endoge-
nous and results directly from regional economic activities and adaptation stra-
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tegies, such as the feedback of economic activity on regional climate through
LULC changes. Downscaling from global to regional climate change is uncer-
tain and cannot be considered stable and linear across time and space ; it is in-
fluenced by regional economic activities. These regional distributions shift with
agents’ decisions (urbanization, agricultural expansion) and, in turn, affect those
decisions (sectoral specialization, migration). In this research project, I model a
qualitatively distinct mechanism linking economic activity and climate impacts
and quantify how much this channel matters for the aggregate and distributio-
nal intertemporal welfare impacts of climate change within a dynamic spatial
framework. Human activity affects LULC through agricultural expansion and
urbanization. The biophysical channels (albedo, evapotranspiration, roughness)
resulting from these LULC changes provide feedback on regional climate condi-
tions (annual distribution of daily temperatures), impacting current linear climate
downscaling and interacting with regional activity. These regional feedbacks also
interact with adaptation decisions and may reduce the expected welfare gains
from adaptation mechanisms. I first estimate reduced-form relations between
changes in agricultural intensity and LULC, and changes in urban land demand
and LULC. Leveraging gridded estimates from climate science linking changes
in regional LULC to temperatures, I build a dynamic spatial model with multiple
locations, two sectors (agricultural and non-agricultural), and individuals who
adapt through trade, migration, and sectoral specialization. Climate change af-
fects regional productivities and amenities heterogeneously. For internal validity,
I use recent developments in climate adaptive response estimation and the mo-
del’s equilibrium conditions to estimate dose-response functions of regional ame-
nities and sectoral productivities to the annual distribution of daily mean tempe-
ratures. Finally, I apply the model to 1° gridded data globally and solve it with
exact hat algebra to avoid computing fundamental initial productivities and ame-
nities. Im my baseline SSP2-4.5 simulation, without biophysical impacts, almost
all locations experience negative welfare changes from nonlinear regional intra-
annual warming patterns interacted with nonlinear binned damage patterns. My
results suggest that there are no benefits to be expected from climate change in the
Northern Hemisphere. Adding biophysical channels, i.e. a non-linear and time-
varying downscaling from global to regional temperature distributions, accounts
for 2.4% of the aggregate biogeochemical welfare impacts of climate change. Both
biogeochemical and biophysical climate impacts are regressive, decreasing with
2015 income per capita levels. Regional economic activity shapes regional climate
impacts and has non-negligible aggregate and distributional consequences.
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3 List of research work

In this PhD thesis, spanning over more than three years, I have strived to
address climate uncertainties and their implications for economic policy. This
endeavor led me to critically examine the limitations of our standard models.
Throughout my research, I have explored the validity of our social choice crite-
ria (Chapter 1), the accuracy of our stylized representations of the climate system
and its subcomponents (Chapter 2), the effectiveness of our data aggregation me-
thods across space and time (Chapter 3), and the modelling of regional biophysi-
cal impacts (Chapter 4). I am the first author of all these research projects, though
I am deeply grateful for the invaluable contributions of my co-authors. I recom-
mend focusing on Chapters 2 and 4, which, in my view, make the most original
contributions to the scientific literature and public debate among all chapters.
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Chapter 1 : Fillon, Guivarch, Taconet, 2023. ‘Optimal climate policy under tip-

ping risk and temporal risk aversion’, Journal of Environmental Economics
and Management.
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tems’.

Chapter 3 : Fillon, Linsenmeier, Wagner, 2024. ‘Climate shift uncertainty and
economic damages’.

Chapter 4 : Fillon, 2024. ‘The biophysical channels of climate impacts’.

Presentations :
2024 FAERE conference (BETA, U. de Strasbourg), EAERE conference (KU

Leuven), LAGV conference (AMSE), iRisk invited seminar (IESEG, LEM,
U. de Lille), CIRED (internal PhD seminar), U. Paris-Saclay (Economics &
Management, PhD).

2023 MIT (CEEPR, weekly lunch talk), Columbia U. (SIPA, Sustainable Deve-
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Saclay (Economics & Management, PhD seminar).
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International Conference on Public Economic Theory PET 2022 (AMSE),
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Introduction

Le débat public sur le changement climatique a évolué : il ne porte plus sur la
remise en question de ses origines anthropiques, mais sur l’ampleur potentielle
du phénomène, ses impacts sur la croissance économique et le bien-être, ainsi
que sur les stratégies d’adaptation et d’atténuation les plus efficientes en tenant
compte de principes éthiques débattus. En raison des incertitudes économiques,
physiques et scientifiques et de leurs interactions, la société est confrontée à un
éventail de futurs possibles à travers le temps et l’espace, entre différents mo-
dèles scientifiques et pour un modèle donné, ce qui nécessite une prise de déci-
sion éclairée. Mais ce sont précisément ces incertitudes qui rendent la prise de
décision plus complexe. Notre penchant naturel nous pousse à une extrémité de
ce spectre : par exemple, les techno-optimistes favorisent les meilleurs scénarios
à gauche de la distribution, tandis que les collapsologues se concentrent sur les
pires résultats à droite. Je pense que de tels points de vue polarisés ne sont pas des
guides raisonnables pour l’action publique. Cette thèse plaide en faveur d’une
approche globale, qui considère l’ensemble des distributions plutôt que de se
concentrer sur un seul aspect du risque, un modèle scientifique spécifique, un
lieu particulier ou un moment dans le temps. En englobant l’ensemble des dis-
tributions possibles dans le temps, l’espace, le risque et l’incertitude scientifique,
nous jetons les bases de modèles qui intègrent les meilleures connaissances scien-
tifiques disponibles. Sur cette fondation, des décisions peuvent alors être prises,
en tenant compte des préférences temporelles et en matière de risque, ainsi que de
l’aversion pour les inégalités, qui devraient faire l’objet d’un débat public ouvert.
De cette manière, nous pouvons séquencer le processus de prise de décision
et adopter une approche en deux étapes qui différencie explicitement l’objet
de notre attitude à son égard : séparer le risque au sein des modèles de notre
aversion pour le risque, l’incertitude scientifique entre les modèles de notre aver-
sion pour l’incertitude scientifique, et la distribution des futurs possibles dans le
temps et l’espace de notre aversion pour les inégalités intra- et inter-temporelles.
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Box 1 - risque stochastique et incertitudes scientifiques

Ce que l’on appelle généralement le risque englobe deux concepts différents

en économie : le risque standard, où les probabilités associées à chaque état futur

possible du monde sont connues, et les situations incertaines (ambiguës), c’est-à-

dire les situations dans lesquelles il n’y a pas d’attribution unanime de probabilité

en raison d’informations insuffisantes ou d’ensembles de données, de modèles ou

d’avis d’experts concurrents.

1 Quatre dimensions : temps, espace, risque et incer-

titude scientifique

Définir le spectre spatio-temporel des futurs possibles, en tenant compte du
risque stochastique au sein des modèles et de l’incertitude scientifique entre les
modèles, est un défi en raison des incertitudes dans chaque dimension et de leurs
interactions dynamiques. Avant de détailler ces défis et de présenter mes contri-
butions pour les relever, je propose ce point de vue personnel sur la politique
climatique : l’ampleur significative de ces incertitudes devrait nous inspirer de
l’humilité et nous amener à favoriser une perturbation minimale de systèmes
qui échappent à notre contrôle. Si mon étude se concentre sur le changement
climatique, les perturbations d’autres limites planétaires constituent également
une préoccupation majeure. Le scénario moyen des dommages économiques fu-
turs ne doit pas être le seul guide pour agir : c’est la profonde incertitude quant
à la réaction du système terrestre à nos perturbations qui doit nous pousser à
prendre les mesures les plus décisives à court terme. À moyen terme, nous pou-
vons espérer réduire le coût de nos efforts intenses d’atténuation en explorant et
en réduisant davantage ces incertitudes. En d’autres termes, je ne crois pas que
le pire doive être ignoré simplement parce qu’il n’est pas certain, ni que le pire
soit certain simplement parce qu’il est possible. Cependant, je penche en faveur
d’une approche prudente consistant à envisager les pires scénarios avec plus de
sérieux, tant dans leur modélisation que dans notre attitude à leur égard.

1 Temps

Le temps est une dimension cruciale de la question climatique, qui soulève
deux défis principaux. Le premier défi, reconnu depuis l’époque de Frank Ram-
sey au moins, consiste à résoudre des problèmes avec des horizons temporels
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longs ou infinis, ce qui présente des difficultés à la fois éthiques et numériques.
Dans un cadre normatif, la pratique de l’actualisation temporelle pure est en-
core couramment utilisée, une pratique qui est "indéfendable d’un point de vue
éthique et qui découle simplement de la faiblesse de l’imagination". L’optimi-
sation numérique du bien-être des générations présentes et futures est souvent
réalisée au prix d’un traitement inégal de ces générations. Dans des contextes
positifs, par exemple dans les modèles d’évaluation spatiale intégrée (Cruz and
Rossi-Hansberg, 2024) économique, le défi d’un long horizon est contourné en
supposant un équilibre stationnaire et la convergence des fondamentaux pour
la clôture du modèle, une hypothèse audacieuse sans fondement empirique. Le
second problème, moins souvent abordé en économie en raison des simplifica-
tions de la modélisation des systèmes, qui utilisent souvent des modèles d’épui-
sement de stocks fixes, est l’impact du passage du temps sur la dynamique de
ces systèmes en raison de l’auto-corrélation temporelle. Le système climatique
et ses composantes, perturbés par les activités humaines, ont par exemple leur
propre dynamique indépendante due à des effets de rétroaction, à l’inertie ou à
des non-linéarités qui peuvent générer des changements abrupts et qualitatifs de
leur régime par le simple passage du temps.

Box 2 - éléments de basculement dans le système climatique

Les éléments de basculement sont des composantes à grande échelle du

système terrestre susceptibles de passer un point de basculement. Un point de

basculement est un seuil critique à partir duquel une perturbation minime peut

modifier qualitativement l’état du système. Parmi les exemples d’éléments de

basculement figurent la forêt amazonienne, la calotte glaciaire du Groenland ou la

circulation méridienne de retournement de l’Atlantique, qui peuvent être classés

en fonction du domaine terrestre auquel ils appartiennent : respectivement la

biosphère, la cryosphère ou l’océan et l’atmosphère.
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FIGURE 1.3 – Éléments de basculement dans le système climatique. Illustration
reprise de Armstrong McKay et al. (2022).

2 Espace

L’espace est une autre dimension essentielle du problème, car les effets du
changement climatique et la capacité d’atténuation et d’adaptation sont très hé-
térogènes d’une région à l’autre au fil du temps. Cette dimension soulève un
défi majeur : l’agrégation spatiale. La granularité croissante des données socio-
économiques et climatiques permet de mieux comprendre les phénomènes à dif-
férentes échelles. Cependant, cette granularité plus fine peut poser trois problèmes
principaux. Premièrement, certains phénomènes peuvent être non linéaires à une
échelle micro-économique mais linéaires à une échelle macroéconomique, et vice
versa (Burke et al., 2015). Le deuxième problème est l’explosion de la dimension
des problèmes numériques lorsque le nombre de lieux augmente, en particulier
si les décisions prises dans une localisation influencent tous les autres (Desmet
and Rossi-Hansberg, 2024). Enfin, le troisième problème est l’auto-corrélation
spatiale, qui devient de plus en plus problématique à mesure que la granularité
augmente (Hsiang, 2016). L’espace et le temps interagissent, soulevant des défis
supplémentaires, tels que l’articulation de l’inégalité inter- et intra-temporelle, ou
l’interaction des auto-corrélations spatiales et temporelles, qui peuvent conduire
à des effets de propagation qui sont plus difficiles à estimer, plus instables à pré-
dire, et plus complexes à modéliser et à calibrer.

Je crois que nous devons aller et venir entre le stylisé et le détaillé, en
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veillant constamment à ce que notre acceptation du stylisé comme une bonne
première approximation se maintienne lorsque nous introduisons d’autres as-
pects du problème ou lorsque nous changeons d’échelle dans une des dimen-
sions évoquées. Par exemple, le stock cumulé d’émissions mondiales est pro-
bablement une bonne première approximation si l’on considère le modèle DICE
(Nordhaus, 2008) et son échelle globale. Mais une fois que nous désagrégeons
l’espace pour examiner les impacts distributifs du changement climatique, comme
dans la récente littérature spatiale quantitative, je pense que nous devrions consi-
dérer d’autres mécanismes, par exemple les impacts des canaux biophysiques
via les changements d’utilisation et de couverture des sols sur les climats ré-
gionaux, car ces mécanismes apportent des non-linéarités dans les interactions
terre-homme et interagissent avec les stratégies d’adaptation au changement cli-
matique de premier ordre généralement modélisées, telles que la migration et la
concentration de la population, le changement des schémas commerciaux et des
prix relatifs ou le changement structurel régional.

Box 3 - Impacts climatiques biophysiques et biogéochimiques

À l’échelle locale et régionale, les modifications de l’occupation des sols,

telles que l’urbanisation ou la transition des terres cultivées vers d’autres types

d’usages, ont un impact sur les climats régionaux en raison des canaux biophy-
siques (Masson-Delmotte et al., 2019). Des exemples de canaux biophysiques

sont les changements d’albédo, les changements d’évapotranspiration ou les

changements de rugosité. L’albédo est la fraction du rayonnement solaire réfléchie

par une surface. L’évapotranspiration est le processus combiné de l’évaporation

de la surface de la Terre et de la transpiration de la végétation. La longueur de

rugosité est la mesure de la rugosité d’une surface, qui influence la façon dont

l’air se déplace au-dessus de cette surface. Ces changements dans les conditions

terrestres régionales affectent le climat régional. Les modèles d’évaluation spatiale

intégrée (Desmet and Rossi-Hansberg, 2024) omettent ces mécanismes dans leurs

évaluations des impacts climatiques : ils se concentrent sur le canal biogéochimique
des émissions cumulées de carbone à l’échelle mondiale, dont ils déduisent les

impacts locaux à l’aide d’un facteur invariant dans le temps.
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FIGURE 1.4 – Impacts biophysiques des activités humaines. Illustration reprise de
Masson-Delmotte et al. (2019).

3 Risque

Les situations sociales risquées sont des situations dans lesquelles les proba-
bilités d’occurrence des événements sont connues ; c’est-à-dire que l’ensemble de
la distribution des états futurs possibles du monde est connu mais que l’état
du monde n’est pas déterministe. L’intégration du risque stochastique dans les
modèles économiques appliqués au changement climatique soulève quatre défis
principaux.

Premièrement, il est difficile de calibrer et de définir le risque. La notion en-
globe différents concepts : par exemple, le risque paramétrique, tel que la va-
leur réelle de la réponse transitoire du climat aux émissions cumulées, diffère du
risque de trajectoire, qui découle des multiples réalisations possibles d’un mo-
dèle dont les conditions initiales sont perturbées. Une représentation standard
du risque économique et climatique dans la littérature macroéconomique, par
exemple dans Hong et al. (2023), représente la volatilité avec des sauts réver-
sibles le long d’une tendance économique lisse et d’une trajectoire de concentra-
tion représentative (SSP), avec des processus de Poisson et de Wiener, plutôt que
de considérer des changements de régime plus abrupts, des non-linéarités et des
catastrophes. Pourtant, certains risques climatiques ont été caractérisés par les
climatologues, comme le risque de points de basculement climatique. Nous en
savons trop sur ces risques tangibles pour être pleinement satisfaits de la modéli-
sation des risques génériques de catastrophe ou d’extinction : Ritchie et al. (2021)
propose des équations de forme réduite pour ces systèmes en première approxi-
mation. Caractériser la catastrophe comme une propriété émergente du système
dynamique plutôt que de définir une probabilité d’effondrement ad hoc peut nous
apprendre beaucoup sur la politique économique optimale. Cela nécessite un tra-
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vail interdisciplinaire qui devrait aller au-delà de l’utilisation des résultats des
modèles climatiques (Folini et al., 2024) en intégrant des mécanismes et des pro-
cessus géophysiques crédibles (Dietz et al., 2021), même de forme réduite.

Un deuxième défi concerne les multiples sources de risques climatiques et
économiques qui interagissent dans l’espace et dans le temps, une corrélation qui
pourrait augmenter ou diminuer le risque global. Par exemple, en ce qui concerne
les risques climatiques, divers sous-processus climatiques ont une dynamique
qui interagit de différentes manières avec le changement climatique mondial et
l’activité macroéconomique. Ces sous-processus ont des valeurs d’assurance di-
verses (Lemoine and Rudik, 2017; Dietz et al., 2018). Dans le tableau ci-dessous,
je reproduis les données de Armstrong McKay et al. (2022) sur les éléments de
basculement, leur seuil de réchauffement et le signe de la rétroaction qu’ils pour-
raient avoir sur les climats mondiaux ou régionaux (en °C). Certains éléments
de basculement réduisent la température, mais cette diminution de la tempéra-
ture moyenne n’a pas le même impact selon le seuil auquel le point de bascule-
ment est déclenché. De même, les éléments de basculement qui entraînent une
rétroaction positive sur le climat, c’est-à-dire une nouvelle augmentation de la
température, à un seuil de réchauffement bas, n’ont pas la même valeur que les
éléments de basculement qui augmentent les températures à des températures
élevées, sans même tenir compte de la valeur escomptée de l’impact de l’élément
de basculement. On pourrait également examiner les mécanismes précis par les-
quels les points de basculement sont déclenchés et le temps que mettent leurs
conséquences physiques à se manifester une fois qu’ils sont déclenchés. Cette
corrélation est également importante pour les systèmes qui n’ont pas de compor-
tement de basculement, par exemple la forêt tropicale du sud-est de l’Asie, qui
stocke et libère du carbone et dont la dynamique interagit donc avec le change-
ment climatique global. Le planificateur social peut avoir une aversion pour cette
corrélation, ce qui signifie par exemple qu’il peut accorder plus d’importance aux
sous-processus qui ont le plus d’impact sur le bien-être inter-temporel dans les
états du monde où le bien-être inter-temporel est faible.
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Éléments de basculement climatique Seuil de
déclenchement

(°C)

Signe de
l’impact

Pergélisol boréal (dégel brutal) <2°C +
Inlandsis du Groenland et de l’Antarctique occidental <2°C +
Mer de glace de Barents <2°C +
Mers du Labrador et d’Irminger / Convection SPG <2°C -
Amazonie 2-4°C +
Bassins sous-glaciaires de l’Antarctique de l’Est 2-4°C +
Glaciers de montagne 2-4°C +
Sahel et mousson ouest-africaine 2-4°C +
Pergélisol boréal (effondrement) ≥ 4°C +
Glace de mer arctique hivernale ≥ 4°C +
Forêt boréale (expansion septentrionale) ≥ 4°C +
Inlandsis de l’Antarctique Est ≥ 4°C +
Circulation méridienne de retournement de l’Atlantique ≥ 4°C -
Forêt boréale (déperissement austral) ≥ 4°C -

TABLE 1.3 – Table des éléments de basculement, avec leurs seuils probables
de déclenchement et le signe de leurs impacts (en °C). Tableau repris de Arm-
strong McKay et al. (2022)

Un troisième défi est la résolution du risque dans le temps et la possibilité
d’apprentissage. Lors du calcul de l’impact sur le bien-être, devons-nous suppo-
ser que la distribution future des risques se resserrera probablement autour de sa
moyenne au fil du temps? Le planificateur social doit-il avoir une préférence en
ce qui concerne la résolution des risques dans le temps? Ces préférences en ma-
tière de résolution temporelle du risque et de l’incertitude sous-tendent la plupart
des modèles récursifs (Kreps and Porteus, 1978; Strzalecki, 2013), et interagissent
avec les aversions temporelles et atemporelles au risque et à l’incertitude (Stanca,
2023) d’une manière qui est souvent négligée dans la recherche appliquée.

Le dernier défi consiste à prendre le risque au sérieux, ce qui implique de
définir un choix social optimal en présence d’un véritable risque stochastique,
c’est-à-dire dans des contextes où le décideur prend en compte l’ensemble des
trajectoires futures possibles à chaque période, plutôt que de faire la moyenne
des réalisations déterministes à la Monte Carlo (Crost and Traeger, 2013; Lemoine
and Rudik, 2017). Cela pose des défis numériques, car il n’existe actuellement
aucune solution globale pour résoudre les problèmes d’optimisation avec plus
de quelques variables d’état, en fonction de la complexité de la dynamique et du
risque (Cai, 2019; Cai and Lontzek, 2019). D’une part, les progrès récents dans
l’utilisation des réseaux neuronaux profonds (Azinovic et al., 2022; Friedl et al.,
2023) peuvent soulever des questions éthiques, si le critère de choix social sous-
jacent n’est plus explicite. D’autre part, les méthodes de perturbation (Van den
Bremer and Van der Ploeg, 2021; Bilal, 2023; Bilal and Rossi-Hansberg, 2023) ne
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sont adaptées qu’aux petits risques autour de la solution d’un équilibre qui est
présupposé.

4 Incertitudes scientifiques

Les situations scientifiques incertaines sont celles dans lesquelles il n’y a pas
d’attribution unanime de probabilité en raison d’informations insuffisantes ou
d’ensembles de données, de modèles ou d’avis d’experts concurrents. Cette in-
certitude diffère du risque stochastique standard, tout comme sa résolution po-
tentielle dans le temps. La difficulté, cependant, est de calibrer la résolution de
l’incertitude scientifique dans un monde où le progrès scientifique n’est pas li-
néaire et où les théories scientifiques sont sous-déterminées (Quine, 1970). Pour la
politique économique, il est crucial de prendre en compte les désaccords scienti-
fiques dans un cadre unique, car le choix social optimal n’est généralement pas la
moyenne des choix optimaux effectués sur la base de modèles concurrents. Nous
pourrions même aller plus loin et examiner les raisons pour lesquelles les scien-
tifiques sont d’accord ou en désaccord (Bommier et al., 2021) plutôt que de nous
concentrer uniquement sur le résultat. Cette incertitude scientifique est particu-
lièrement importante pour les risques catastrophiques très débattus. Par exemple,
alors que l’on suppose souvent que la probabilité d’événements catastrophiques
est connue et unanimement acceptée, il existe des débats scientifiques impor-
tants sur leur probabilité d’occurrence, leur échelle de temps une fois qu’ils sont
déclenchés, leurs conséquences, etc. (Armstrong McKay et al., 2022). Le Groupe
d’experts intergouvernemental sur l’évolution du climat (GIEC) articule des juge-
ments de confiance quantitatifs et qualitatifs sur ces affirmations ; nous pourrions
imaginer de prendre en compte les deux dans nos décisions (Bradley et al., 2017).

5 Cette thèse

J’ai d’abord travaillé sur les incertitudes climatiques parce que je pensais qu’elles
pouvaient influencer la manière dont nous définissons les politiques d’atténua-
tion et d’adaptation. Ensuite, j’ai réalisé que l’étude des systèmes dynamiques
comportant des risques et des incertitudes à l’interface entre la terre et l’homme
pouvait apporter des avancées méthodologiques au domaine de l’économie. En-
fin, j’ai découvert que l’examen de ces risques et incertitudes climatiques pouvait
apporter de nouvelles perspectives sur la manière dont nous devrions aborder
le choix social normatif en économie, en particulier dans des contextes inter-
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temporels. Ainsi, ma thèse suit trois directions : documenter les conséquences
économiques des incertitudes climatiques, contribuer d’un point de vue métho-
dologique à l’étude de l’incertitude à l’interface des systèmes humains et natu-
rels, et enrichir la littérature sur le choix social normatif inter-temporel avec des
modèles numériques pour la quantification. Pour contribuer à cette littérature,
j’étudie alternativement les différentes dimensions soulignées ci-dessus et na-
vigue entre les approches normatives et les approches positives, chacune avec
ses propres avantages, inconvénients et hypothèses.

Dimension Chapitre 1 Chapitre 2 Chapitre 3 Chapitre 4
Temps
Espace
Risque
Incertitude scientifique

TABLE 1.4 – Correspondance entre ces dimensions et mes chapitres

Le noir indique que cette dimension est l’enjeu clef du chapitre tandis que le gris indique
que cette dimension est traitée dans le chapitre mais n’est pas centrale.

2 Politiques climatiques : approches positives et nor-

matives

1 Approches normatives

La Commission Brundtland des Nations Unies fournit un cadre qui nourrit
plus d’interrogations nouvelles que de conseils pratiques : "le développement
durable est un développement qui répond aux besoins du présent sans compro-
mettre la capacité des générations futures à répondre à leurs propres besoins". Le
respect de ce critère dans les quatre dimensions susmentionnées représente un
défi théorique et numérique. En effet, chaque dimension implique des considéra-
tions éthiques cruciales pour le choix social.

Premièrement, dans la dimension temporelle, nous devons décider de la quan-
tité de consommation à sacrifier aujourd’hui pour le bien-être futur. Cela s’étend
à un arbitrage plus profond impliquant la valeur sociale de la réduction des
risques catastrophiques : à quelle consommation devrions-nous renoncer aujour-
d’hui pour réduire la probabilité d’une catastrophe climatique incontrôlable de-
main (Bommier et al., 2015)?

Deuxièmement, dans la dimension spatiale, il existe des inégalités au sein des
pays et entre eux que nous pourrions souhaiter aborder, telles que les inégalités
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dans les émissions de gaz à effet de serre (cause) et les disparités dans l’expo-
sition aux impacts climatiques (conséquence). Pour des raisons d’économie po-
litique, telles que l’impossibilité supposée de mettre en œuvre des programmes
de transfert de richesses à l’échelle mondiale en vue d’une égalisation des re-
venus entre les régions sans avoir été essayés, les économistes ont souvent opté
pour une pondération de l’utilité, telle que la pondération de Negishi. À mon
avis, cette approche reflète un manque d’imagination similaire à celui observé
dans l’actualisation temporelle pure. Ces inégalités spatiales interagissent avec
les inégalités temporelles, car les générations futures peuvent être plus riches en
moyenne, mais les plus riches d’aujourd’hui sont plus riches que les plus pauvres
de demain, en fonction des hypothèses sur les impacts climatiques et la croissance
future de la productivité totale des facteurs.

Troisièmement, il existe des inégalités dans l’exposition au risque. Une ques-
tion éthique clé dans les contextes risqués est de savoir s’il faut préférer l’évite-
ment des catastrophes ex-post (une préférence pour la concentration de la distri-
bution des catastrophes, telles que les décès dus aux catastrophes climatiques)
ou l’équité ex-ante face aux risques (une préférence pour l’égalisation de la pro-
babilité de mourir entre les agents), deux concepts contradictoires (Keeney, 1980;
Bernard et al., 2018). Quelle que soit la position éthique adoptée entre ces deux
options, l’intégration de l’exposition au risque implique que la question politique
devient une question ex ante, et pas seulement une question ex post de redistri-
bution si et une fois que le risque s’est matérialisé, comme c’est le cas avec l’in-
demnisation pour les catastrophes naturelles de l’Agence fédérale de gestion des
urgences aux États-Unis.

Quatrièmement, la même question se pose concernant l’exposition inégale
à l’incertitude scientifique. Cela reflète le manque d’intérêt de la communauté
scientifique pour certaines questions de recherche, la rareté des données et le
faible nombre de climatologues et d’économistes en dehors des pays de l’OCDE
et de la Chine. De plus, face à l’incertitude scientifique, la recherche scientifique
et les politiques économiques tentent de rendre l’environnement plus prévisible
pour les agents économiques, mais cet effort peut avoir un effet distributif si cer-
tains agents bénéficient de l’incertitude scientifique. L’exposition inégale à l’in-
certitude scientifique soulève la question des effets distributifs de la résolution
de cette incertitude.
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2 Approches positives

Même si la distinction entre approches normatives et approches positives est
quelque peu sur-jouée, car il s’agit toujours de jugements de valeur, certains
éléments ne relèvent pas directement d’un critère de choix social, même s’ils
l’orientent. C’est le cas de nos hypothèses sur l’adaptation des agents au chan-
gement climatique, sur la croissance future, etc. Les modèles d’optimisation de
choix social, en raison de la complexité de la résolution de problèmes en grande
dimension avec du risque, ont souvent choisi de ne pas modéliser l’adaptation
de manière explicite. Il s’agit d’une hypothèse importante qui peut faire l’objet
d’une forme de critique à la Lucas. Les modèles d’évaluation intégrée spatiaux
récents évoluent pour modéliser la migration des agents, les changements dans la
spécialisation économique et d’autres adaptations endogènes (Desmet and Rossi-
Hansberg, 2024). Cependant, ils s’écartent du cadre éthique du planificateur so-
cial qui maximise le bien-être social, en mettant l’accent sur les scénarios d’im-
pact. Cela représente une perte importante lorsque l’on considère la politique
optimale aujourd’hui, car le critère de choix optimal n’est pas explicite. En effet,
l’optimisation n’est pas globale mais résulte simplement de la combinaison de
nombreux choix décentralisés d’agents rationnels motivés par des anticipations
parfaites et la maximisation de l’utilité.

Le défi majeur de cette approche positive, souligné par Popper (1945), est
l’historicisme dans les sciences sociales : "Qu’il me suffise de dire que par [his-
toricisme] j’entends une théorie, affectant toutes les sciences sociales, qui fait de
la prédiction historique son objectif principal, et qui enseigne que cet objectif peut
être atteint si l’on découvre les “rythmes” ou “modèles”, les “lois”, ou les “ten-
dances générales” qui sous-tendent les développements historiques". Ceci est lié
à la critique de la plupart des économistes qui supposent l’ergodicité des proces-
sus socio-économiques, une hypothèse an-historique selon North (2005). C’est le
piège dans lequel la modélisation du comportement économique, comme l’adap-
tation au climat et l’extrapolation des impacts météorologiques passés en impacts
climatiques futurs, peut nous conduire. Le premier problème est de prétendre
identifier des lois dans les sciences sociales et de les projeter pour une modélisa-
tion prospective. Le deuxième problème est le pouvoir politique de ces soi-disant
lois qui pourraient être douteuses, générant de fausses oppositions parmi les par-
tisans de solutions similaires. C’est le cas, par exemple, de l’hypothèse selon la-
quelle la croissance économique future de la productivité totale des facteurs est
exponentielle, alors que des travaux récents suggèrent qu’elle est additive (Phi-
lippon, 2022). L’approfondissement de ces hypothèses positives pourrait aider
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à réconcilier certains points de vue entre la croissance verte et la décroissance,
sans recourir à des positions éthiques fortes, telles qu’une préférence marquée
pour la redistribution et une forte aversion pour le risque, ou une surestimation
des risques climatiques catastrophiques par rapport à d’autres états possibles du
monde. En ce qui concerne les mérites de ces approches positives dans l’écono-
mie du changement climatique, je reste prudent même si je les adopte, que ce soit
par conformisme scientifique ou en raison de leurs attraits, les principaux étant
la disponibilité croissante de riches ensembles de données maillées, la tentative
de commencer à répondre à la critique de Lucas et la tractabilité numérique des
problèmes positifs en grande dimension par rapport aux méthodes de solution
globale appliquées aux cadres d’optimisation inter-temporelle normatifs.

3 Description de la thèse

Comment les incertitudes découlant de ces quatre dimensions (temps, es-
pace, risque, incertitude scientifique) affectent-elles les choix sociaux optimaux
à l’interface entre les systèmes naturels et humains? Les deux premiers articles
de ma thèse sont normatifs et se concentrent sur la définition d’une politique
optimale dans le cadre de modèles dynamiques d’optimisation stochastique qui
tiennent compte du changement climatique endogène. Cette approche alimente
les discussions sur le choix d’un critère de choix social inter-temporel rationnel
et cohérent face à des risques catastrophiques irréversibles (Projet 1) et sur la mo-
délisation de la dynamique incertaine des sous-systèmes terrestres et de leurs
interactions avec la macroéconomie et l’incertitude climatique globale (Projet 2).

1 Temps, risque et incertitude scientifique

Dans le premier chapitre, nous développons un modèle dynamique stochas-
tique économie-climat (Cai and Lontzek, 2019) pour examiner et quantifier une
hypothèse critique dans le modèle standard utilisé pour définir la politique cli-
matique optimale : la neutralité temporelle au risque agrégé dans le cadre de
l’utilité escomptée actualisée. Cette hypothèse peut-elle tenir lorsque la société
est confrontée à des risques importants et irréversibles tels que les points de bas-
culement climatiques, par exemple le dépérissement de la forêt amazonienne ou
la désintégration de la calotte glaciaire du Groenland? Une fois qu’un point de
basculement est franchi, le bien-être de toutes les générations suivantes est af-
fecté négativement et corrélé positivement. Tout comme un gestionnaire de por-
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tefeuille financier averse au risque considère le risque global d’un portefeuille
plutôt que d’additionner les risques des actifs individuels (parce que les corré-
lations positives entre les risques des actifs augmentent le risque global) il peut
être optimal pour un planificateur social d’accorder plus d’importance aux si-
tuations sociales où le risque global qui pèse sur l’utilité inter-temporelle est im-
portant, par exemple si le bien-être des différentes générations est faible et po-
sitivement corrélé. Le planificateur social dans le cadre du modèle d’espérance
d’utilité escomptée additif n’accorde pas plus d’importance à ce risque global
pesant sur l’utilité inter-temporelle. Nous utilisons des préférences sociales sen-
sibles au risque (Bommier et al., 2017), qui sont monotones et respectent la domi-
nance stochastique de premier ordre, contrairement au cadre d’Epstein-Zin-Weil,
et comparons la politique optimale selon ce critère au modèle standard d’utilité
espérée, à la fois analytiquement et numériquement. Nos résultats numériques
montrent que l’aversion au risque temporel entraîne une augmentation de 30%
du coût social du carbone (SCC) pour une forte augmentation irréversible de 10%
des dommages économiques dus au changement climatique. L’hypothèse d’une
neutralité temporelle à l’égard du risque n’est alors pas adaptée à la politique cli-
matique, en particulier si nous prévoyons des dommages importants dus à des
événements catastrophiques, car le coût social du carbone augmente fortement
avec le niveau des dommages. Si l’on pense que des catastrophes majeures ayant
des effets multiplicateurs importants, tels que des changements de régime irré-
versibles, sont possibles, alors l’aversion du planificateur social à l’égard de ces
risques ayant une incidence sur l’utilité inter-temporelle doit être prise en compte.
En revanche, si ce risque n’existe pas ou si les dommages possibles sont faibles,
nous devrions nous en tenir au modèle additif, qui ne présente pas les inconvé-
nients éthiques de l’aversion pour les catastrophes.

L’une des limites de notre approche est qu’elle est très stylisée, en particulier
la modélisation d’un risque de basculement générique. Nous n’avons pas modé-
lisé un élément de basculement et sa dynamique, ni les conséquences d’un risque
climatique, mais nous l’avons représenté comme un processus stochastique avec
un saut irréversible. Mon objectif était donc de développer un modèle qui four-
nisse une représentation plus précise des incertitudes climatiques avec une cali-
bration explicite. Plus précisément, je voulais que le résultat catastrophique soit
une propriété émergente du système dynamique, plutôt qu’une spécification ad
hoc, conformément à la théorie de la bifurcation (Ritchie et al., 2021). En outre,
j’avais l’intention d’étudier l’interaction d’un risque climatique catastrophique
spécifique avec le risque climatique global ayant un impact sur le bien-être inter-
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temporel dans un cadre qui incorpore les incertitudes scientifiques.
Dans le deuxième chapitre, nous examinons comment les modèles simplifiés

d’incertitudes climatiques utilisés par les économistes peuvent fausser la poli-
tique économique optimale, en particulier lorsque l’on considère les sous-systèmes
de la Terre. Ces sous-systèmes présentent trois caractéristiques essentielles. Pre-
mièrement, le changement climatique mondial affecte leur dynamique. Deuxiè-
mement, ces sous-systèmes ont un impact sur le changement climatique mondial.
Ces deux effets peuvent être positifs ou négatifs. Troisièmement, la dynamique
de ces sous-systèmes n’est pas uniquement une fonction linéaire du changement
climatique ; elle implique également une inertie, des processus auto-entretenus
ou des effets de rétroaction. Des exemples notoires de sous-systèmes climatiques
sont les éléments de basculement climatique. Mais il existe également d’autres
sous-systèmes sans comportement de basculement, tels que la forêt tropicale d’Asie
du Sud-Est. Les interactions entre ces sous-systèmes et le changement climatique
mondial sont de nature stochastique. Une question centrale pour les économistes
est de déterminer si et comment les risques idiosyncratiques associés à ces sous-
systèmes affectent le risque climatique global et le bien-être inter-temporel. Nous
explorons analytiquement les canaux par lesquels ces interactions influencent la
politique climatique optimale. En outre, nous étudions comment la gestion régio-
nale de ces sous-systèmes pourrait être guidée par une représentation même sty-
lisée de leur dynamique géophysique. Nous appliquons notre cadre à un modèle
quantitatif calibré de la forêt amazonienne, dont la dynamique future fait l’objet
d’un débat intense. En dehors des scénarios de risque standard, pour lesquels les
probabilités d’état du monde futur sont connues, il existe des incertitudes scienti-
fiques substantielles concernant la dynamique des sous-systèmes et leur interac-
tion avec le changement climatique mondial, en raison d’ensembles de données et
de modèles climatiques concurrents. La théorie de la décision offre des outils per-
mettant d’intégrer ces incertitudes dans notre critère de choix social. L’approche
méthodologique de cet article implique la résolution d’un programme d’optimi-
sation avec une variable d’état qui présente une courbure due aux risques de
basculement dans la dynamique de la forêt tropicale, en utilisant des polynômes
de Chebyshev simpliciaux pour l’approximation de la fonction de valeur sur des
processeurs (CPU) parallèles (Cai, 2019). Notre approche apporte deux informa-
tions économiques essentielles à la littérature sur la déforestation tropicale (Bal-
boni et al., 2023). Premièrement, le coût social du carbone doit tenir compte des
effets d’une augmentation marginale des émissions cumulées mondiales sur la
dynamique de la forêt tropicale. Il s’agit notamment d’adapter les politiques ac-
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tuelles aux émissions de carbone de la forêt amazonienne dans des conditions
climatiques changeantes et d’intégrer un canal d’assurance, un « Amazon beta
», étant donné que la valeur sociale des émissions de carbone varie en fonction
de l’état du monde où elles se produisent. Deuxièmement, la valeur sociale de la
forêt amazonienne en tant que puits de carbone ne doit pas se limiter à sa seule
teneur actuelle en carbone ; le coût social du système dynamique (SCDS) est éga-
lement crucial. Ce coût reflète la diminution marginale de l’état du sous-système
due à la diminution de sa capacité d’autorégulation. Ces idées conduisent à deux
implications politiques importantes. Premièrement, le coût social du carbone de-
vrait être augmenté pour refléter l’impact des émissions marginales mondiales
sur la forêt amazonienne, qui libère davantage de carbone. Cet ajustement garan-
tit que les émetteurs du monde entier compensent les effets de leurs émissions
sur le bien-être. Dans notre calibration centrale, nous estimons que cet ajustement
représente une hausse de 15% dans le niveau de SCC standard qui serait appli-
qué seulement en présence de risque climatique agrégé. La disparité entre le SCC
standard et le SCC avec rétroaction endogène de l’Amazonie pourrait être mise
à profit pour financer les systèmes coasiens pour la préservation de la forêt tro-
picale dans une perspective de double dividende. Deuxièmement, l’évaluation
d’un hectare de forêt tropicale devrait inclure non seulement le SCC standard,
mais aussi le SCC élargi à l’Amazonie et une partie du SCDS. Une réduction de la
couverture forestière a un impact sur le bien-être à la fois direct, par la libération
de carbone, et indirect, en affectant la dynamique future du sous-système. Nous
estimons que le SCDS représente environ 16% de la valeur standard du SCC.
Notre cadre théorique peut donc être appliqué aux analyses locales des coûts et
bénéfices de la déforestation et complète les avancées récentes dans la quantifi-
cation du stockage du carbone à l’aide d’observations par satellite. Notre modé-
lisation nous permet d’estimer qu’une hausse de 24% de la valeur de la tonne
de carbone stockée dans la forêt amazonienne devrait être appliquée pour valo-
riser un hectare marginal de forêt dans le cadre des analyses coûts-bénéfices, par
exemple pour des projets d’infrastructure au Brésil. Nous pensons que notre ap-
proche analytique appliquée ici à un modèle quantitatif de la forêt amazonienne
pourrait également être appliquée à d’autres systèmes géophysiques dynamiques
afin d’éclairer les décisions politiques aux niveaux mondial et régional.

L’approche normative a des limites, car elle devient difficile à résoudre lorsque
la complexité du problème d’optimisation dynamique stochastique augmente.
Par conséquent, l’analyse des effets distributifs du changement climatique, comme
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l’inclusion de nombreuses régions ou la prise en compte des adaptations indivi-
duelles des agents, devient impraticable. Une approche positive qui se passe de
choix social pourrait être la voie à suivre sur ces questions jusqu’à ce que les mé-
thodes d’optimisation en grande dimension deviennent accessibles sans interface
de passage de messages sur des clusters à haute performance.

2 Temps et espace

Comment les incertitudes découlant des quatre dimensions mises en évi-
dence ci-dessus (temps, espace, risque, incertitude scientifique) affectent-elles
nos estimations des impacts climatiques à l’interface entre les systèmes natu-
rels et humains? Alors que l’approche des deux premiers articles de ma thèse
est stylisée et globale, se concentrant sur la modélisation du risque stochastique
et son impact sur la politique optimale, la deuxième partie de ma thèse aborde
la dimension spatiale des incertitudes climatiques. J’ai cherché à travailler avec
des données climatiques et socio-économiques maillées de plus en plus dispo-
nibles, qui peuvent fournir des informations précieuses sur les impacts écono-
miques du changement climatique. Dans le chapitre 3, nous analysons l’agréga-
tion de ces données dans le temps et l’espace. Dans mon quatrième chapitre, je
développe un modèle d’équilibre spatial sectoriel dynamique et l’applique à des
données maillées de 1° afin de quantifier l’impact non linéaire des canaux biophy-
siques souvent omis dans cette littérature (albédo, évapotranspiration et rugosité
de surface), entraînés par les changements d’utilisation et d’occupation des sols
(LULC), sur les impacts climatiques régionaux et les décisions d’adaptation.

Dans le troisième chapitre, nous démontrons comment l’agrégation actuelle
des données climatiques et économiques dans le temps (au niveau annuel) et l’es-
pace (à l’échelle globale) peut masquer certaines incertitudes climatiques entre
les modèles climatiques et fausser nos estimations des impacts climatiques. Cette
approche annuelle globale est couramment utilisée dans les modèles intégrés
économie-climat standard et dans les nouveaux modèles spatiaux quantitatifs.
Nous utilisons des projections climatiques régionales de distributions annuelles
de température quotidiennes moyennes downscalées et corrigées des biais et les
combinons avec des fonctions dose-réponse mondiales et régionales estimées em-
piriquement. Nous distinguons dans quelle mesure les impacts manquants du
fait de l’agrégation dans le temps et dans l’espace des données sont dus à l’hé-
térogénéité dans les projections régionales du changement climatique par rap-
port à l’hétérogénéité régionale des dommages pour diverses trajectoires socio-
économiques (SSP). La prise en compte de l’évolution de l’ensemble de la forme
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de la distribution des températures moyennes journalières à l’échelle régionale
révèle que les dommages mondiaux en 2050 pourraient être supérieurs d’environ
25% par rapport à une distribution synthétique où la forme de ces distributions
régionales resterait la même quand la moyenne des températures change. Les
différences dans la forme de la distribution des températures journalières entre
les modèles climatiques transforment les classements de risque standard basés
sur les anomalies de température et augmentent l’incertitude entre les modèles
climatiques. Notre procédure montre que ces agrégations dissimulent également
des impacts distributifs hétérogènes à travers le monde, avec des régions conti-
nentales de l’hémisphère nord particulièrement touchées par ces incertitudes sur
la forme de la distribution intra-annuelle des dommages.

Dans le quatrième chapitre, je contribue à la littérature bourgeonnante en
économie spatiale qui modélise l’activité économique à l’échelle régionale en uti-
lisant des données spatiales, en particulier dans l’évaluation des impacts écono-
miques du changement climatique (Desmet and Rossi-Hansberg, 2024). Cette lit-
térature révèle une grande incertitude quant à l’interaction entre l’activité éco-
nomique et le changement climatique. Certaines de ces incertitudes, telles que la
réduction linéaire de l’échelle du changement climatique mondial aux impacts
locaux, peuvent être traitées par des approches de type Monte Carlo. Cependant,
une partie de l’incertitude est endogène et résulte directement des activités éco-
nomiques régionales et des stratégies d’adaptation, comme la rétroaction de l’ac-
tivité économique sur le climat régional par le biais des changements d’usage des
terres. Le downscaling du changement climatique global au changement clima-
tique régional est incertain et ne peut être considéré comme stable et linéaire dans
le temps et l’espace ; il est influencé par les activités économiques régionales. Les
climats régionaux évoluent en effet en fonction des décisions des agents (urbani-
sation, expansion agricole) et, à leur tour, ces climats régionaux affectent leurs dé-
cisions (spécialisation sectorielle, migration). Dans ce projet de recherche, je mo-
délise un mécanisme qualitativement distinct reliant l’activité économique et les
impacts climatiques et je quantifie l’importance de ce canal pour les impacts inter-
temporels agrégés et distributifs du changement climatique sur le bien-être dans
un cadre spatial dynamique. Dans mon modèle, l’activité humaine affecte l’usage
des terres par le biais de l’expansion agricole et de l’urbanisation. Les canaux bio-
physiques (albédo, évapotranspiration, rugosité) résultant de ces changements
d’usage des sols ont un effet sur les conditions climatiques régionales (mesu-
rées par les distributions annuelles des températures quotidiennes moyennes).
Ces rétroactions régionales interagissent également avec les décisions d’adapta-
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tion et peuvent réduire les gains de bien-être attendus des mécanismes d’adap-
tation. Je commence par estimer des relations de forme réduite entre l’activité
économique régionale et les impacts biophysiques régionaux via les demandes
de terres urbaines et agricoles. Je construis ensuite un modèle spatial dynamique
à l’échelle mondial, avec deux secteurs (agricole et non agricole) et des indivi-
dus qui s’adaptent par le biais du commerce, de la migration et de la spéciali-
sation sectorielle. Le changement climatique affecte de manière hétérogène les
productivités régionales sectorielles et les aménités régionales. Pour la validité
interne du modèle, j’utilise les conditions d’équilibre du modèle pour estimer
les fonctions dose-réponse des aménités régionales et des productivités secto-
rielles à la distribution annuelle semi-paramétrique des températures moyennes
journalières. Enfin, j’applique le modèle à des données maillées à 1° à l’échelle
mondiale et je le résous en algèbre à chapeau dynamique afin d’éviter de calcu-
ler les productivités et les aménités initiales fondamentales. Dans ma simulation
de référence SSP2-4.5, sans impacts biophysiques, presque toutes les régions su-
bissent des changements négatifs de bien-être en raison des schémas non linéaires
de réchauffement intra-annuel régional, combinés à des dommages non-linéaires
par bins de température. D’après mes résultats, aucun bénéfice notable n’est à
attendre du changement climatique dans l’hémisphère Nord. L’ajout de canaux
biophysiques, c’est-à-dire un down-scaling non linéaire, endogène aux activités
régionales et variable dans le temps des distributions de température globale à ré-
gionale, représente 2.4 % des impacts biogéochimiques standard du changement
climatique sur le bien-être. Les impacts climatiques biogéochimiques et biophy-
siques sont tous deux régressifs, décroissant en fonction des niveaux de revenu
par habitant de 2015. L’activité économique régionale façonne clairement les im-
pacts climatiques physiques régionaux et entraîne des conséquences agrégées et
distributionnelles non négligeables.

3 Liste des travaux de recherche

Dans cette thèse de doctorat, qui s’étend sur plus de trois ans, je me suis efforcé
d’étudier les incertitudes climatiques et leurs implications pour la politique éco-
nomique. Tout au long de mes recherches, j’ai étudié la validité de nos critères de
choix social en présence de risques irréversibles (chapitre 1), la précision de nos
représentations stylisées du système climatique et de ses composantes (chapitre
2), l’efficacité de nos méthodes d’agrégation des données dans l’espace et dans le
temps (chapitre 3) et l’importance des canaux biophysiques régionaux du chan-
gement climatique (chapitre 4). Je suis le premier auteur de tous ces projets de
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recherche, mais je suis profondément reconnaissant à mes coauteurs pour leurs
contributions inestimables. Je recommande de se concentrer sur les chapitres 2 et
4 qui, à mon avis, apportent les contributions les plus originales à la littérature
scientifique et au débat public parmi tous les chapitres.

Documents de travail :
Chapter 1 : Fillon, Guivarch, Taconet, 2023. ‘Optimal climate policy under tip-

ping risk and temporal risk aversion’, Journal of Environmental Economics
and Management.

Chapter 2 : Fillon, Guivarch, 2024. ‘The need for regulation of climate subsys-
tems’.

Chapter 3 : Fillon, Linsenmeier, Wagner, 2024. ‘Climate shift uncertainty and
economic damages’.

Chapter 4 : Fillon, 2024. ‘The biophysical channels of climate impacts’.

2024 FAERE conference (BETA, U. de Strasbourg), EAERE conference (KU
Leuven), LAGV conference (AMSE), iRisk invited seminar (IESEG, LEM,
U. de Lille), CIRED (internal PhD seminar), U. Paris-Saclay (Economics &
Management, PhD).

2023 MIT (CEEPR, weekly lunch talk), Columbia U. (SIPA, Sustainable Deve-
lopment Colloquium), Duke U. (Nicholas & Sanford Schools, UPEP PhD
seminar), Yale U. (School of the Environment, PhD seminar), U. Paris-
Saclay (Economics & Management, PhD seminar).

2022 CIRED (PhD seminar, internal), ENS Paris-Saclay (CEPS PhD seminar),
Modeling Uncertainty in Social, Economic, and Environmental Sciences
MUSEES Conference (EM Lyon), 12th FAERE Workshop (ENS Paris-Saclay),
International Conference on Public Economic Theory PET 2022 (AMSE),
EAERE conference (U. di Bologna), FAERE conference (U. de Rouen).
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Chapitre 1

Optimal climate policy under tipping risk and
temporal risk aversion

This article a is a joint work with Céline Guivarch (École des Ponts,
CIRED) and Nicolas Taconet (École des Ponts, CIRED & PIK), published
in Journal of Environmental Economics and Management, 2023.

We investigate the implications of absolute risk aversion with respect
to intertemporal utility, i.e. temporal risk aversion, in the presence of a
stylized climate tipping risk affecting productivity irreversibly. Optimal
climate policy is more stringent under temporal risk aversion, in order
to reduce all present and future probabilities of crossing the tipping
point and avoid a situation where all generations are badly off. Temporal
risk aversion implies a 30% increase in the social cost of carbon (SCC)
under our benchmark calibration and for a 10% irreversible increase in
the level of economic damage from climate change. The optimal SCC
under temporal risk aversion increases sharply with the level of damage
brought by a potential tipping point.

Keywords : stochastic climate-economy modelling, risk-sensitive recur-
sive preferences, environmental policy, risk aversion.

JEL classification : D61, D63, D71, D81, Q54, Q58.

a. We thank two anonymous referees for their invaluable help in improving the ma-
nuscript. We also thank Thomas Douenne, Johannes Emmerling, Simon Jean, Vincent
Martinet, Aurelie Méjean, Eddy H.F. Tam and Stephane Zuber for comments on earlier
versions of this work. Any remaining errors are ours. Céline Guivarch received funding
from the European Union’s Horizon Europe research and innovation programme under
grant agreement No. 101081604 (PRISMA). Corresponding author : Romain Fillon.

40



1 Introduction

When it comes to decision-making, risk is all around. But the concept is equi-
vocal. First, it can refer to a univariate risk bearing on a single prospect. The
seminal work from Pratt (1964) and Arrow (1971) introduced this risk into the
analysis of decision-making through univariate measures of absolute and rela-
tive risk aversion within expected utility theory. A substantial body of literature
has developed to generalise these measures of risk aversion to mutivariate risks
(Kihlstrom and Mirman, 1974). A risk-averse portfolio manager does not sum the
risk of each asset, but considers the aggregate risk bearing on the portfolio. In-
deed, a positive correlation between these asset risks increases the aggregate risk.
In intertemporal settings, the absolute risk aversion with respect to aggregate in-
tertemporal risk is called the temporal risk aversion (Bommier et al., 2015). The stan-
dard discounted expected utility model assumes temporal risk-neutrality (Ahn,
1989). This assumption has large implications as it implies that the decision-
maker has no preference on the correlation between individual risks. Introdu-
cing absolute risk aversion with respect to intertemporal utility, i.e. temporal risk
aversion, on the other hand, allows to consider risk bearing on aggregate inter-
temporal utility. It can explain agent’s intertemporal decisions (Bommier, 2013;
Bommier and Grand, 2019). It is also of interest from a normative point of view,
to define optimal policies in risky social situations that involve several successive
generations whose welfare is correlated.

A prominent example of intertemporal social risk management is climate policy-
making. A major concern of climate policy-making is the possibility of non-linearities
such as tipping points in the climate system. Once some thresholds for green-
house gas concentrations in the atmosphere are exceeded, the state of the cli-
mate system could be radically and irreversibly altered. Tipping elements with
significant economic implications have been identified, including the slowdown
of the Atlantic Meridional Overturning Circulation, the West Antarctic ice sheet
disintegration, the Amazon rainforest dieback, or the Greenland ice sheet disin-
tegration (Arias et al., 2021). In the states of the world where the tipping point
occurs, the welfare of all subsequent generations is affected by this qualitative
regime change. Consequently, considering absolute risk aversion with respect to
intertemporal utility becomes imperative due to the substantial impact on inter-
temporal welfare.

Temporal risk aversion can be interpreted as positive intertemporal correla-
tion aversion (Richard, 1975), as positive intertemporal correlation implies a lar-
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ger aggregate risk over intertemporal utility. A temporally risk-averse social plan-
ner prefers the welfare of different generations to be negatively or not correlated
rather than positively correlated, in order to lower the risk on the aggregate out-
come. In other words, the temporally risk averse social planner would be ready to
give up some social welfare to prevent a situation where the tipping point is cros-
sed and all subsequent generations are badly off. Thus, this social diversification
strategy is appealing from a normative point of view when facing irreversible ca-
tastrophic tipping risks. Also, from a positive point of view, empirical elicitations
of individual preferences suggest that individual agents might exhibit positive
correlation aversion (Ebert and van de Kuilen, 2015; Andersen et al., 2018; Gan-
gadharan et al., 2019; Rohde and Yu, 2022; Lanier et al., 2024).

In this article, we investigate how temporal risk aversion may affect optimal
climate policy. We analyze both analytically and numerically why, how and by
how much two social planners, i.e. a temporally risk-neutral and a temporally
risk-averse planner, differ in their optimal policy under risk. We focus on a spe-
cific type of risk : a climate tipping risk. We use a dynamic stochastic climate-
economy model (Guivarch and Pottier, 2018; Taconet et al., 2021) and extend it
to an alternative social welfare function which allows the analysis of temporal
risk aversion : the risk-sensitive preferences axiomatized in Hansen and Sargent
(1995). By comparing optimal climate policies under risk-sensitive preferences
with those under the standard additive form of expected discounted utility, which
assumes temporal risk-neutrality, we shed light on the implications of temporal
risk aversion for policy design.

We find that, in the presence of a tipping risk, climate policy is more stringent
under risk-sensitive preferences. The social planner under risk-sensitive prefe-
rences is willing to sacrifice more today to reduce all present and future pro-
babilities of crossing the tipping point to avoid a situation of low overall inter-
temporal utility level. The difference in optimal climate policy between the two
planners increases more than proportionally to the increase in the possible shock
or in the temporal risk aversion. Under our benchmark calibration, a change from
additive to risk-sensitive preferences implies a 30% increase in the social cost of
carbon (SCC) for a 10% irreversible increase in the damage factor. Switching from
additive to risk-sensitive preferences under a 10% possible shock is equivalent to
a 5 percentage points increase in the shock if we keep additive preferences. The
difference between the two social choice criteria increases steeply with risk. Fur-
thermore, other things being equal, a 50% decrease in pure time preference (from
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1.5% to 1% yearly) is needed to obtain the same optimal policy under additive
preferences as under risk-sensitive preferences for a 10% tipping risk and under
our benchmark calibration. Thus, a change in the structure of the social welfare
function can be directly compared to a change in the value of some parameters
that have been highly debated. Finally, we use an analytical decomposition of our
optimal policy program to derive the key channels through which a tipping risk
affects optimal policy under both social welfare functions.

Our work contributes to the literature aiming to enhance the integration of
different types of risk, particularly the risk of climate tipping points (Lemoine
and Traeger, 2014; van der Ploeg and de Zeeuw, 2019; Cai and Lontzek, 2019),
into stochastic integrated assessment models (IAM). The first integrated climate-
economy models were deterministic, e.g. Nordhaus (2008). These models did
not allow for a proper consideration of risk and uncertainty in planner’s de-
cisions, even when Monte Carlo analyses were conducted (Crost and Traeger,
2013). In parallel, contributions to modeling endogenous catastrophic environ-
mental risk were mostly stylized (Clarke and Reed, 1994; Tsur and Zemel, 1996;
Bommier et al., 2015). In particular, these models are based on the assumption
that welfare after the catastrophic event is exogenous and independent of the
planner’s actions. Tipping points are less extreme than catastrophes after which
production and consumption would be exogenous and independent of the plan-
ner’s decisions. Indeed, these are ecological regime shifts with large economic
consequences rather than complete economic or institutional collapses. These
events are also different from reversible extreme events that occur as one-off ca-
tastrophes along a smoothly evolving climate regime with fluctuations, traditio-
nally modelled with Poisson and Wiener processes in the macroeconomics lite-
rature on disasters, e.g. in Bretschger and Vinogradova (2019). Departing from
the assumption of a geometric Brownian motion with rare and reversible catas-
trophic events, we study irreversible regime changes. This modelling approach
has counterparts in the real business cycles literature studying markov switching
rational expectations models with Bayesian learning, e.g. in Bullard and Singh
(2012).

Our contribution confronts the standard discounted expected utility model
with an alternative criterion : a risk-sensitive criterion steming from social choice
theory and axiomatized in Bommier et al. (2017). Exploration of alternative so-
cial choice criteria under endogenous climate change was undertaken to intro-
duce relative risk aversion under Epstein-Zin-Weil preferences (Belaia et al., 2017;
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van der Ploeg and de Zeeuw, 2018), a robust control penalty (Rudik, 2020) and
ambiguity aversion under isoelastic preferences in a setting with uncertainty (Le-
moine and Traeger, 2016). In comparison with EZW preferences, risk-sensitive
preferences are the only recursive preferences axiomatized by Kreps and Porteus
(1978) that admit a separation of risk and intertemporal attitudes, while being
monotone (Bommier et al., 2017). This desirable normative property ensures that
a more risk-averse planner consistently prioritizes risk reduction. Those prefe-
rences can be defined through the following recursion (Hansen and Sargent, 1995;
Bommier et al., 2017) :

Vt =

{
(1 − β) ut + βE[Vt+1] if ϵ = 0

ut − β
ϵ ln[E(exp[−ϵVt+1])] if ϵ ̸= 0

(1.1)

with ut the instantaneous utility at time t, β a discount factor derived from
pure time preference and ϵ the temporal risk aversion. We hereafter use the de-
nomination of risk-sensitive preferences only for those stationary preferences for
which the social planner is at least as risk averse (ϵ > 0) as a standard plan-
ner with additive preferences. Cases where the social planner is temporally risk-
seeking (ϵ < 0) are not discussed because of potential nonconvexity issues (Bom-
mier and Grand, 2019). A temporally risk-seeking planner would choose a max-
max strategy and positive correlation between the social gambles. If ϵ = 0, then
the social planner is temporally risk-neutral, which comes down to the additive
form.

Firstly, we present our modelling approach (section 2) : a dynamic stochas-
tic climate-economy integrated model with a stylized tipping risk, in which we
compare two alternative social welfare functions. Then, we discuss analytically
how temporal risk aversion affects optimal policy under a tipping risk (section
3). Finally, we quantify numerically the differences between the two social wel-
fare functions under a tipping risk (section 4).

2 A dynamic climate-economy stochastic model

1 A simple illustration

Firstly, we illustrate the significance of temporal risk aversion in the analy-
sis of climate tipping risks using a simplified scenario. Consider three consecu-
tive time periods, representing distinct generations. Two climate regimes exist :
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pre-tipping (PRE) and post-tipping (POST), each associated with different levels
of economic damage. Each generation t can either be in a high (PRE) or a low
(POST) welfare regime, described by the variable ut

i , i ∈ (pre, post), t ∈ 1, 2. We
assume that instantaneous welfare function in each potential situation is the same
for both generations, i.e. u1

i =u2
i .

PRE (0)

PRE (1)

PRE (2)(1 − p)

POST (2)p

(1 − p)

POST
(1)

POST (2)

p

We assume away time discounting and assume that the social planner has no
preference on the order of the attributes and no preference for early resolution
of uncertainty. Under the conditions listed above, a temporally risk-neutral so-
cial planner would be indifferent between the two following lotteries (Bommier,
2005) :

(upost
1 , upost

2 ) with probability 1
3 ,

(upre
1 , upost

2 ) with probability 1
3 ,

(upre
1 , upre

2 ) with probability 1
3 ,

∼

(upost
1 , upost

2 ) with probability 1
2 ,

(upre
1 , upre

2 ) with probability 1
2 .

(1.2)
A social planner under additive preferences would be indifferent between the

two social lotteries A and B as the additive form assumes temporal risk-neutrality,
while a temporally risk-averse social planner has a preference for lottery A. In
other words, a temporally risk-averse social planner is willing to pay a temporal
risk premium to hedge risks across generations and reduce the probability of
complete failure across all generations.

In addition to positive intertemporal correlation aversion, temporal risk aver-
sion bears preference for catastrophe avoidance 1 (Bommier et al., 2015), i.e. prefe-
rence for a mean-preserving contraction in the distribution of catastrophic risks.
The preference for catastrophe avoidance is highly debated in the literature for
two main reasons. First, it is not clear that individual agents are catastrophe-
averse (Rheinberger and Treich, 2017). Furthermore, preference for catastrophe
avoidance may be seen as unethical as a catastrophe-averse planner prefers to

1. If the social planner is temporally risk-seeking (ϵ < 0), she favors risk equity, i.e. equalizing
and spreading the risk among generations.
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concentrate risk on a single generation rather than spreading it evenly (Fleur-
baey, 2010). Consequently, Fleurbaey (2018) highlights that catastrophe aversion
might be appealing only if the catastrophe has a multiplier effect through externa-
lities in society. The possible nonconvexities in the human-environment system,
enhanced by ecological thresholds like climate tipping points, do have this mul-
tiplier property. Indeed, in the states of the world where the tipping point occurs,
the regime change is irreversible and has an impact on all future generations.

We have described in a simple illustration the importance of temporal risk
aversion in risky intertemporal settings. We now present a full-fledged stochastic
climate-economy model to analyse and quantify the importance of temporal risk
aversion for the definition of optimal climate policy under a tipping risk.

2 The model

A climate-economy integrated assessment model aims to study the interac-
tions between the economy and the climate system. We introduce a simple growth
model à la Ramsey, add a stylized representation of the climate dynamics and an
endogenous stochastic tipping point in the climate system. We build on Guivarch
and Pottier (2018) and Taconet et al. (2021), update the economic dynamics to
match DICE-2016 (Nordhaus, 2018) and use an alternative social welfare func-
tion.

Economy In our global model, a single good is produced at each period t
using two production factors, endogenous capital Kt and exogenous labour Lt,
through a Cobb-Douglas production function F(Kt, Lt) = AtKα

t L1−α
t with exoge-

nous Hicks-neutral technological change. The gross output F(Kt, Lt) is affected
by a damage factor Ωt(Tt) that increases with global average temperature Tt. Net
output Yt is derived from the gross output net of damage : Yt = Ωt(Tt)F(Kt, Lt).
Capital dynamics is determined by δ, the per-period capital depreciation, and
st, the savings rate. It writes : Kt+1 − Kt = −δKt + stYt. Gross output induces
emissions, which can be mitigated at a certain cost. The social planner trades off
consumption Ct, mitigation costs (which represent a share Λt of Yt), and invest-
ment : Ct = Yt(1−Λt − st). The mitigation cost Λt depends on the abatement rate
µt and on the cost of the abatement technology that decreases due to exogenous
technical progress. The cost of the abatement technology is calibrated on Nord-
haus (2018) as other parameters of the economic module.

46



Climate We use a simple representation for the climate system with a linear
formula linking temperature change to the stock of carbon emissions (Dietz and
Venmans, 2019). This approach avoids overestimating the delay between emis-
sions and temperature rise. Indeed, the link between cumulative emissions and
temperature has been shown to be almost independent of time and emissions pa-
thways except for very high emission pathways (Leduc et al., 2015) such as the
RCP 8.5 : it should thus hold for any reasonable optimal policy scenario. Emis-
sions are derived from output : Et = σtYt(1 − µt), where σt is the carbon content
of production that decreases exogenously over time. Emissions increase carbon
concentration in the atmosphere and there is no decay. Equation for temperature
change is : Tt = ψ

(
CE0 + ∑t

s=0 Es
)
= ψSt where Tt is the global temperature

increase (in comparison with the pre-industrial era) at time t, CE0 is cumulated
emissions up to the first period of the model, Es the emissions at time s, St the
carbon stock in the atmosphere at time t and ψ the transient climate response to
cumulative carbon emissions (TCRE, ψ = 1.65°C per TtC, according to Masson-
Delmotte et al. (2021)).

Tipping risk We model one stylized endogenous tipping point that may de-
crease the output via an increase in the damage factor affecting the producti-
vity. The tipping point is endogenous as its probability of occurence is a func-
tion of global average surface temperature. If the tipping point is crossed, the
damage factor Ω faces an irreversible J% increase. The pre-tipping damage func-
tion writes : Ω1(T) = 1 − πT2. Once the tipping point is crossed, the damage
increase by J% and the new damage function writes : Ω2(T) = (1 − J)(1 − πT2).
The damage occurs with no delay. The probability of tipping is modeled with
a uniform distribution between initial temperature increase with respect to pre-
industrial era and an upper temperature threshold 2 to make as few assumptions
as possible about the precise temperature at which a tipping event may occur.
Along the path, this specification allows learnings from the bayesian policyma-
ker as she updates her beliefs on the location of the threshold in the state space
and on the probability of tipping at each period. The key assumption from this
specification of the potential tipping event is that there is no tipping risk if the
temperature is stabilized (Lemoine and Traeger, 2014). At each period t, the tip-

2. The lower bound is the 2015 current excess temperature in comparison with the preindus-
trial era (0.87°C in 2015). The upper bound is set to 5.7°C according to the upper bound of the
temperature increase reached in 2100 in RCP 8.5 (Arias et al., 2021). See 1 for a sensitivity analy-
sis.
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ping point is crossed with probability ht :

ht(Tt, Tt−1) =


Tt−Tt−1

Tmax−Tt−1
if Tt < Tmax,

1 if Tt ≥ Tmax.
(1.3)

We have presented above a stochastic model with a stylized tipping point. A
second step is to use a social welfare function that allows the study of temporal
risk aversion. We present this function in more depth below. To allow compari-
son with previous literature, we compare how two forms of social preferences
behave in a risky intertemporal social setting. The first form is the additive one.
The second form is the one of risk-sensitive preferences with positive temporal
risk aversion.

3 Social preferences

In our model, we write two Bellman equations for the two possible situations,
pre- and post-tipping, under the additive and the risk-sensitive social welfare
functions, as welfare is affected by a J% increase in the damage factor once the tip-
ping point is crossed. If the tipping point is crossed, the Bellman equation writes
the same way for the two programs. The two social welfare functions yield the
same policy in the risk-free post-tipping situation : temporal risk aversion plays
no role in these risk-free situations, whatever its level. Once the tipping is cros-
sed, all risk is solved : the tipping risk is the sole risk we study here. The state
variables of our optimization program are xt = (St, Kt) respectively the cumu-
lative emissions stock and the capital stock at time t. The control variables are
yt = (µt, st), respectively the abatement rate and the savings rate at time t. The
instantaneous utility function writes : ut(xt, yt) = C1−η

t /(1 − η) with η the elasti-
city of marginal utility.

Additive preferences Under additive preferences, once the tipping point is
crossed, we have : Upost

t (xt, yt) = max
yt

[
ut(xt, yt) + βUpost

t+1 (xt+1)
]

under the constraints :

xt+1 = G(xt, yt+1) and yt ∈ Γ(xt), with Γ the space of possible (positive) values
for the control variables and G a transfer function. If the tipping point has not
been crossed yet at time t, then it may be crossed at time t+1 with probability ht+1

or the world can stay in a pre-tipping situation with a probability (1 − ht+1). The
pre-tipping Bellman equation under additive preferences and under the same
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constraints as above writes :

Upre
t (xt, yt) = max

yt

[
ut(xt, yt) + β[(1 − ht+1)U

pre
t+1(xt+1) + ht+1Upost

t+1 (xt+1)]
]
(1.4)

Risk-sensitive preferences Once the tipping point is crossed, the program
under risk-sensitive preferences reduces to the additive one. If ϵ = 0, the program
under risk-sensitive preferences reduces to the additive one. Finally, it should be
noted that Vpost = Upost. The Bellman equation under the same constraints in the
pre-tipping situation writes :

Vpre
t (xt, yt) = max

yt

(
ut(xt, yt)− β

ϵ ln
[
(1 − ht+1) exp(−ϵVpre

t+1(xt+1)) + ht+1 exp(−ϵVpost
t+1 (xt+1))

])
(1.5)

4 Comparison with alternative social preferences

We compare the additive expected utility model to risk-sensitive preferences
in order to study temporal risk aversion. Two main other frameworks have been
used to study risk aversion under endogenous catastrophic climate change : the
Epstein-Zin-Weil framework (hereafter, EZW) and the multiplicative preferences.

1 Epstein-Zin-Weil preferences

EZW preferences have been widely used in risky intertemporal settings to
discuss optimal policy, e.g. in Cai and Lontzek (2019), because of their flexibility,
which allows to disentangle preference over time and preference over states of
the world. We depart from it for two main reasons.

The first reason is that these preferences are monotone with respect to first-
order stochastic dominance 3 (Bommier et al., 2017) only in the limit cases where
relative risk aversion equals the inverse of the elasticity of intertemporal sub-
stitution (they reduce to the standard additive model) or when the elasticity of
intertemporal substitution equals one (EZW preferences are then risk-sensitive).
If EZW preferences are well ordered in terms of risk aversion ‘in the large’ (willin-
gness to pay to eliminate all risks), those preferences are not well ordered in terms
of risk aversion ‘in the small’ (willingness to pay for marginal risk reductions).
Thus, a social planner under EZW preferences might choose dominated strate-

3. A social planner has preferences that respect first-order dominance if, for two lotteries A
and B with A dominating B, she prefers A to B regardless of her utility function, as long as it
is weakly increasing. The lottery A dominates B if it gives more wealth than B realization by
realization.
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gies in social settings where it is not possible or optimal to eliminate all risk which
may precisely be the case with climate change. In particular, it has been shown in
the theoretical and applied literature that this non-monotonicity can lead to two
types of counter-intuitive behaviours. On the one hand, the EZW agent can make
more precautionary choices than necessary, choosing to build up more precautio-
nary savings in a risky situation than the savings chosen in the worst state of the
world that could occur under this risk if it happened deterministically (Bommier
et al., 2017). This leads to a more extreme behavior than a max-min approach. On
the other hand, the role of risk aversion could be non-monotone, meaning that for
a higher relative risk aversion and the same risk, the planner can be less precau-
tionous (Kimball and Weil, 2009; Bommier and Grand, 2019). The fact that such
dominated strategies can be chosen, even if not always, makes this criterion less
appealing for the definition of the optimal policy. Unlike the EZW framework,
risk-sensitive preferences are monotone with respect to first-order stochastic do-
minance, which means that dominated strategies are never chosen. In particular,
in our setting, we show in annex 3 that the risk premium is always positive and
increasing in the temporal risk aversion ϵ. When relative risk aversion is lower
than the inverse of the elasticity of intertemporal substitution, EZW preferences
show preference for late resolution of uncertainty and a negative risk premium,
while risk-sensitive preferences exhibit preference for early resolution of uncer-
tainty whenever ϵ > 0. Risk-sensitive preferences thus allow a more rational so-
cial choice while preserving the flexibility and recursivity properties of the Kreps
and Porteus (1978) framework.

The second reason why we use risk-sensitive preferences rather than EZW
preferences is that the coefficient of relative risk aversion studied in EZW pre-
ferences does not directly compare with the absolute risk aversion with respect
to intertemporal utility studied under risk-sensitive preferences 4, as a reduction
in relative risk does not always come with a reduction in aggregate risk (Bom-
mier et al., 2012). A relative risk averse agent prefers to have non-extreme payoffs

4. Risk-sensitive preferences use a constant absolute risk aversion certainty equivalent, whereas
EZW preferences use a constant relative risk aversion certainty equivalent (Bommier et al., 2015).
When comparing temporal lotteries of consumption, constant absolute risk aversion has been
seen as irrealistic because risk aversion is the same for all levels of wealth under this assumption.
Here, the constant absolute risk aversion certainty equivalent is applied to distributions of utility
levels rather than consumption levels. This assumption is made under risk-sensitive preferences
as monotonicity implies that risk aversion is considered with respect to aggregate utility. Thus,
in order to preserve history independence, constant asbolute risk aversion with respect to aggre-
gate intertemporal risk ensures that the utility of the first periods does not impact social choice
afterwards (Bommier et al., 2017).
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across states of the world within periods, while a temporally risk-averse planner
prefers to have non-extreme payoffs across states of the world over the whole
time horizon considered.

2 Multiplicative preferences

The second form are the multiplicative preferences (Bommier et al., 2015) that
rule out pure time preference so that different generations are not given different
utility weights because they were born at different dates. Instead, we use an in-
termediate form of risk-sensitive preferences that does not assume away time
discounting for three reasons. Firstly, we do not include an extinction risk, so
that without pure time preference, our undiscounted dynamic program would be
too sensitive to the arbitrary terminal value and limit the comparability between
the two programs. The second reason is that we want to analyze the sole role
of temporal risk aversion on social choice rather than intertwining this questio-
ning with the debate between discounted and undiscounted utilitarianism (Stern,
2006; Nordhaus, 2008). The third reason is the comparability between additive
and risk-sensitive preferences. Indeed, additive and risk-sensitive social planners
have the same rankings over deterministic consumption paths regardless of the
value of the temporal risk aversion ϵ. We can therefore simply vary ϵ within a rea-
sonable value range and make comparisons between the two social choice criteria
under risk for different values of ϵ.

We have characterized the additive and the risk-sensitive social welfare func-
tions and explained how temporal risk aversion can be an important determinant
of climate policy. We now assess analytically the impact of temporal risk aversion
on optimal climate policy under a tipping risk.

3 How does temporal risk aversion affect optimal po-

licy under a tipping risk?

Firstly, we derive analytically the impact of temporal risk aversion on the op-
timal policy under a tipping risk. We decompose the pre-tipping value functions
(1.4) and (2.9) which incorporate the risk of tipping and analyze the case where
a single state variable determines the chance of crossing the threshold. We focus
solely on St, the cumulated stock of emissions at time t. As we are considering op-
timal climate policy, we focus on the abatement rate µt and derive the first-order
condition of our policy programs. Our analytical decomposition is a two-step
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procedure. First, we decompose the immediate short-term effect on next-period
welfare of a marginal variation in abatement rate departing from the optimum,
following Lemoine and Traeger (2014). Then, we derive the complete long-term
effect of a marginal variation in the cumulative emissions stock on all future pro-
babilities of tipping. The decomposition is done for the additive and risk-sensitive
preferences : thus, we can derive how the channels through which a tipping risk
affects optimal policy under additive preferences adjust to temporal risk aver-
sion, in both the short and long term.

From the first-order condition of our policy programs, we show that the tip-
ping risk affects optimal policy through three short-term channels. The first chan-
nel, the marginal hazard effect mhe, measures the impact of the control variable
on the immediate probability of tipping. The second channel, the differential wel-
fare impact dwi, measures the differential impact of the control variable on wel-
fare depending on the situation, i.e. pre- or post-tipping, and if the tipping point
is crossed. The last channel, the marginal impact pre-tipping mpre, defines the
decrease in next-period’s welfare resulting from an increase in the abatement po-
licy if the tipping point has not been crossed yet : possible future tipping points
are included in this last channel. Removing all arguments that are independent
of µt in equation (3), the value of the optimal policy program in the pre-tipping
situation under additive preferences writes :

ut[µ
∗
t ] + β

[
ht+1(µ

∗
t )U

post
t+1 (µ

∗
t ) + (1 − ht+1(µ

∗
t ))U

pre
t+1(µ

∗
t )
]

︸ ︷︷ ︸
Ue f f

t+1

(1.6)

The first term of equation (1.8) corresponds to the level of instantaneous utility
at time t for an optimal choice of the control variable µ∗

t . The second term gives
the expected welfare at time t+1 when there is a probability of tipping point under
temporal risk neutrality and for an optimal choice of the control variable, scaled
by the discount factor β. Varying µt gives us the immediate decomposition under
additive preferences characterizing optimal policy : u′

t = β(dwiadd
t+1 + mheadd

t+1 +

mpreadd
t+1), with the following channels :

mheadd
t+1 = ∂ht+1

∂St+1

∂St+1
∂µt

(Upre
t+1 − Upost

t+1 )

dwiadd
t+1 = ht+1

∂St+1
∂µt

(
∂Upre

t+1
∂St+1

− ∂Upost
t+1

∂St+1

)
mpreadd

t+1 = − ∂Upre
t+1

∂St+1

∂St+1
∂µt

(1.7)
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The risk-sensitive social planner maximizes at time t a utility function Vt which
is linked to the random continuation utility Vt+1 through the following recursion :
Vt = ut + βϕ−1(E[ϕ(Vt+1)]). The function ϕ writes ϕ(V) = (1 − exp(−ϵV))/ϵ. It
is increasing and strictly concave for any ϵ > 0. The value of the optimal policy
program in the pre-tipping situation under risk-sensitive preferences is :

ut[µ
∗
t ] + β ϕ−1

[
ht+1(µ

∗
t )ϕ(V

post
t+1 (µ

∗
t )) + (1 − ht+1(µ

∗
t ))ϕ(V

pre
t+1(µ

∗
t ))
]

︸ ︷︷ ︸
Ve f f

t+1

(1.8)

The immediate decomposition under risk-sensitive preferences writes : u′
t =

β(dwirs
t+1 + mhers

t+1 + mprers
t+1), with the following channels :

mhers
t+1 =

Bt+1

ϵ

(
∂ht+1

∂St+1

∂St+1

∂µt

[
exp(−ϵVpost

t+1 )− exp(−ϵVpre
t+1)

])
,

dwirs
t+1 = Bt+1

(
ht+1

∂St+1

∂µt

[
∂Vpre

t+1
∂St+1

exp(−ϵVpre
t+1)−

∂Vpost
t+1

∂St+1
exp(−ϵVpost

t+1 )

])
,

mprers
t+1 = −Bt+1

(
∂Vpre

t+1
∂St+1

∂St+1

∂µt
exp(−ϵVpre

t+1)

)
,

with Bt+1 =
(
(1 − ht+1) exp(−ϵVpre

t+1) + ht+1 exp(−ϵVpost
t+1 )

)−1


(1.9)

We highlight how temporal risk aversion implies an adjustment on these chan-
nels in comparison with additive temporally risk-neutral preferences. We extend
the reasoning of Lemoine and Traeger (2016) under uncertainty and ambiguity
aversion to a related setting with risk and risk-sensitive preferences 5 and use
their general approximations for the adjustments on the channels implied by a
concave transformation of the additive social welfare function under a tipping
risk. The complete procedure is depicted in 1. The measure of absolute temporal

risk aversion −ϕ′′

ϕ′

∣∣∣∣
Ve f f

= ϵ is equal to ϵ. We adjust the temporally risk-neutral

marginal hazard effect channel mheadd obtained from additive preferences to find
the risk-sensitive marginal hazard effect mhers :

mhers ≈ mheadd
[

1 + ϵ(Ve f f − Vpre + Vpost

2
)

]
(1.10a)

5. They use an isoelastic function for the transformation with uncertainty aversion in a setting
with an ambiguous tipping point. The equivalent of risk-sensitive preferences in an uncertain
setting would be the multiplier criterion (Bommier et al., 2017).
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where Vpost is the continuation value if the tipping point has already been
crossed, Vpre the continuation value if the tipping point has not been crossed
yet and Ve f f the random continuation value for an optimal choice of the policy
variable. The amplitude and the sign of the adjustment can not be derived analy-
tically. Indeed, an increase in temporal risk aversion ϵ is counter-balanced by its
negative impact on Ve f f as Ve f f is decreasing in ϵ. In comparison with the arith-
metic mean (Vpre + Vpost)/2, the two possible regimes in Ve f f are weighted by
the probability of (not) tipping, lower (higher) than one half in any optimal policy
paths considered here. We thus expect the marginal hazard effect to be increasing
with ϵ in our setting. The marginal hazard effet, depicting the marginal impact
of a marginal increase in abatement on the immediate probability of tipping, re-
lates to the social value of catastrophic risk reduction (Bommier et al., 2015) and
the VSL-like parameter of Weitzman (2009). This channel is associated with self-
protection in Lemoine and Traeger (2014).

We then adjust 6 the temporally risk-neutral differential welfare impact dwiadd

to obtain the risk-sensitive differential welfare impact dwirs. This channel is de-
picted as self-insurance in Lemoine and Traeger (2014). The adjustment writes :

dwirs ≈ dwiadd + ϵh
[
(Ve f f − Vpre)( ∂Vpre

∂µ )− (Ve f f − Vpost)( ∂Vpost

∂µ )
]

(1.10b)

Similarly, the sign of the adjustment of temporal risk aversion on the risk-
neutral DWI cannot be determined analytically. An increase in the temporal risk
aversion ϵ decreases Ve f f and both terms in the bracket, so that the overall sign
depends on the relative level of the marginal welfare impact of the change in po-
licy variable in the pre-threshold and the post-threshold worlds as in the tempo-
rally risk-neutral case. The adjustment decreases with the probability of tipping.
We expect this channel and the adjustment to be negligible. Indeed, they depend
on the value and the trajectory of the tipping probability with respect to ϵ. But
the larger ϵ is, the lower the probability of tipping, because optimal policy under
large temporal risk aversion is expected to be stricter. In our specification as in
Lemoine and Traeger (2014, 2016), the dwi might be completely overwhelmed by
the mhe.

One can finally adjust the last channel : the direct impact of the change in

6. Taken from Lemoine and Traeger (2016), the approximation holds for a low shock.
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policy variable on the welfare if one stays in a pre-tipping situation in the next
period :

mprers = mpreadd ϕ′(Vpre)

ϕ′(Ve f f )
(1.10c)

The adjustment implied by temporal risk aversion is the relative slope of the
transformed continuation value if we stay in a pre-tipping situation on the slope
of the transformed random continuation value. The size of the adjustment de-
pends on the concavity of ϕ, i.e., the strength of temporal risk aversion ϵ. This
term is equal to one when there is no tipping risk, i.e. if the temperature is sta-
bilized, and goes to 0 if the probability of tipping h increases. The adjustment
implied by temporal risk aversion decreases mpre unambiguously as Vpre > Ve f f .

We have focused on the immediate impact of a marginal variation of the policy
variable around the optimum and identified the channels through which the tip-
ping risk affect next-period welfare under additive and risk-sensitive preferences.
So far, we have only analyzed the immediate channels (mhe and dwi) and left
all future impacts of a marginal change in the policy variable in the pre-tipping
continuation value included in mpre as in Lemoine and Traeger (2016). Indeed, to-
day’s emissions also affect all future probabilities of triggering the tipping point.
In order to recover the full impact of temporal risk aversion on the optimal po-
licy under a tipping risk, we need to decompose further this mpre channel. We
do not focus on the marginal impact of an increase in a control variable (i.e. the
abatement rate), but on the marginal impact on the pre-tipping value function of
a marginal increase in a state variable (the concentration stock S). As we assume
that there is no decay, a marginal increase in the concentration stock can be analy-
zed as a marginal increase in carbon emissions. As in Jensen and Traeger (2014),
we assume that the dynamic system is well-defined so that the shadow value
of the carbon concentration increase ∂Vpre/∂S grows sufficiently slowly along
the optimal path to make the limit approach zero over our large time horizon.
We can advance the derivative of our pre-tipping value function with respect to
emissions by one period and reinsert it in itself :

∂Vpre
t

∂St
= u′

t − β

(
mhers

t+1 + dwirs
t+1 − Bt+1exp(−ϵVpre

t+1)

[
u′

t+1 − β(mhers
t+2 + dwirs

t+2 − Bt+2exp[−ϵVpre
t+2]

∂Vpre
t+2

∂St+2
)

])
(1.11)

Iterating the procedure eventually yields a general expression of the margi-
nal impact of a marginal increase in carbon emissions on all present and future
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periods. The complete decomposition under risk-sensitive preferences writes :

∂Vpre
t

∂St
= u′

t − β[mhers
t+1 + dwirs

t+1] + ∑∞
i=t+1 βi−t

∏i
k=t+1

ϕ′(Vpre
k )

ϕ′(Ve f f
k )︸ ︷︷ ︸

adjustment(mpre)


(
u′

i − β[mhers
i+1 + dwirs

i+1]
)

(1.12)
The mpre channel of the immediate decomposition disappears. To differentiate
them from the immediate decomposition terms, the full decomposition terms are
in capital letters. The complete decomposition ∂Vpre

t /∂St = U′
t − MHErs

t −DWIrs
t

now includes all present and future effects :

U′
t = u′

t +
∞

∑
i=t+1

βi−t

(
i

∏
k=t+1

ϕ′(Vpre
k )

ϕ′(Ve f f
k )

)
u′

i,

MHErs
t = βmhers

t+1 +
∞

∑
i=t+1

βi−t+1

(
i

∏
k=t+1

ϕ′(Vpre
k )

ϕ′(Ve f f
k )

)
mhers

i+1,

DWIrs
t = βdwirs

t+1 +
∞

∑
i=t+1

βi−t+1

(
i

∏
k=t+1

ϕ′(Vpre
k )

ϕ′(Ve f f
k )

)
dwirs

i+1

(1.13)

The complete MHErs and DWIrs depend on the sign and amplitude of all the
present and future immediate mhers and dwirs, and all future effects are scaled by
the discount factor and the positive adjustment implied by temporal risk aver-
sion. We have described analytically how temporal risk aversion changes the va-
rious channels through which a tipping risk affects a decision-maker, both short
and long term. We assess numerically the impact of temporal risk aversion in a
dynamic climate-economy stochastic model under a tipping risk and quantify the
different channels depicted.

4 A numerical investigation

1 Calibration

We use the same specifications for the macroeconomic model as Nordhaus
(2018). We use typical ranges of possible values for the key parameters. The pure
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rate of time preference ρ is 1.5% (Nordhaus, 2018). The marginal utility parameter
η is set to 1.5 with a sensitivity analysis from 0.5 to 2.5. We explore a large range
for the shock J, ranging from 0 to 10% as explored in van der Ploeg and de Zeeuw
(2018), Cai and Lontzek (2019) and van der Ploeg and de Zeeuw (2019).

Social planners under additive and risk-sensitive preferences have the same
ordering over deterministic consumption paths 7. Thus, we can make compari-
sons between the two social choice criteria under risk for different values of ϵ.
We look for a range of plausible values for this parameter and a benchmark value
within it to set a default value and perform a sensitivity analysis. The range of va-
lues used in the literature is large. Anderson (2005) uses 0.1, 1 and 2 to study the
dynamics of optimal Pareto allocations of risk-sensitive agents. When studying
precautionary savings, Bommier et al. (2017) explore large values ranging from 0
to 4, and Bommier and Grand (2019) explore very large values, up to 100. In order
to reduce the plausible range, we use the fact that, when the elasticity of intertem-
poral substitution is set to one, the EZW preferences are risk-sensitive preferences
(Tallarini Jr, 2000). Indeed, risk-sensitive and EZW preferences are special cases
of the more general family of recursive Kreps and Porteus (1978) preferences. An
analytical relation between the temporal risk aversion on the one hand and pure
time preference ρ and relative risk aversion χ of EZW preferences on the other
hand can thus be formulated in this precise case : ϵ = −(1 − β)(1 − χ) with χ

the coefficient of relative risk aversion with respect to atemporal wealth gambles,
and β the discount rate. Following the IAM literature calibration for χ (Acker-
man et al., 2013; Cai and Lontzek, 2019), we use χ = 10 as a benchmark and run
a sensitivity analysis around this value. In our benchmark case, with χ = 10 and
ρ = 1.5% yearly, we have ϵ = 0.133. A low χ = 1.1 would yield ϵ = 0.0015 while
a large χ = 20 would yield ϵ = 0.3. The lower the pure time preference, the lower
the difference between additive and risk-sensitive preferences (Bommier et al.,
2015). Our benchmark measure may not be adapted to social settings : a welfare-
maximizing social planner might be more temporally risk averse than individuals
when a catastrophic and irreversible risk bears on all future generations. In an
empirical elicitation of the aversion towards correlated risks in the context of do-
nations to risky aid projects, Gangadharan et al. (2019) find that individuals are
more averse to correlated risks when they donate other people’s money. This is

7. On the contrary, this is not the case for all values of ϵ under multiplicative preferences that
are undiscounted (ρ = 0). Thus, Bommier et al. (2015) have to rely on a specific calibration of ϵ
so that additive and multiplicative preferences yield the same discount rate and are comparable.
The calibration of ϵ under multiplicative preferences depends on the form of the instantaneous
utility, the level of pure time preference and the post-tipping exogenous consumption.
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an interesting line of thought for climate change, where the contemporary social
planner has to choose an appropriate level of temporal risk aversion for other ge-
nerations than the one he belongs to. Thus, our benchmark value for the temporal
risk aversion is conservative and in the lower bound of those estimates.

2 A comparison of the two social welfare functions under risk

We derive the optimal climate policy under the two social welfare functions in
a risky intertemporal social setting using dynamic programming. Details of the
resolution are in 2. A key instrument to compare optimal policy along the tra-
jectory is the social cost of carbon (SCC) at initial time. For both specifications,
it writes : −β(∂SE[W1]|y1

/ ∂CW0|x0,y0∗) with y0∗ the optimal abatement and in-
vestment of the program at initial time given x0 and β the discount rate derived
from pure time preference. W, the value function, can be U (additive) or V (risk-
sensitive). Figure 1 gives the absolute value of the SCC ($/tC) under additive and
risk-sensitive preferences at initial time for a range of irreversible increase in the
damage factor J and the ratio of the SCC under risk-sensitive preferences to the
SCC under additive preferences for various ϵ and J.
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FIGURE 1.1 – Absolute values of the additive and risk-sensitive SCC (in $ per tC) at initial
time (left) and ratio of the risk-sensitive SCC to the additive SCC (right).

Graph for various J and ϵ under our benchmark calibration (η = 1.5, ρ = 1.5%). The curves
overlap for the two smallest values of ϵ in the left-hand graph. Same graphs with a wider range
for J are given in 1.

We can draw three conclusions from the graphs above. First, optimal climate
policy under risk-sensitive preferences is more stringent for any value of ϵ and J
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than under additive preferences. An increase in temporal risk aversion unambi-
guously leads to an increase in the social cost of carbon due to the monotonicity of
risk-sensitive preferences. The second conclusion is that switching from additive
to risk-sensitive preferences under a tipping risk induces a large change in opti-
mal policy : the form of the social welfare function matters, as already highlighted
in Bommier et al. (2015) for more catastrophic collapses. For a tipping point indu-
cing a 10% irreversible increase in the damage factor, the SCC under risk-sensitive
preferences is 30% higher than under additive preferences under our benchmark
ϵ = 0.133 : it goes from 227$ per tC to 293$ per tC. This difference is increasing
with the size of the possible shock J : the larger the tipping risk, the larger the
difference between the optimal policies. Finally, temporal risk aversion plays a
key role : under risk-sensitive preferences, for the largest ϵ = 0.3, the SCC at ini-
tial time is 2-times higher than under additive preferences for a 10% shock. The
slope of the ratio of the risk-sensitive SCC to the additive SCC is also increasing
with ϵ. Increasing temporal risk aversion increases unambiguously the weights
attributed to the catastrophic states of the world where numerous generations are
badly off with a low intertemporal utility level. We run a sensitivity analysis in 3
to check if our result is not affected by the calibration of the inequality aversion
parameter η. The ratio of the risk-sensitive to the additive SCC is increasing in
the value of the inequality aversion η. The SCC under risk-sensitive preferences
is larger than under additive preferences for any value of η explored here.

To illustrate the magnitude of the change in optimal climate policy arising
from temporal risk aversion, we show how switching from additive to risk-sensitive
preferences compares with changes in the value of some parameters under addi-
tive preferences. We focus on two parameters that have been subject to debates
in the literature. On the one hand, we consider the rate of pure time preference
ρ (Stern, 2006; Nordhaus, 2008). On the other hand, we focus on the value of the
economic damage generated by climate change (Piontek et al., 2021), and more
specifically by a climate tipping point. First, Figure 2 (left) shows how a change
from additive to risk-sensitive preferences compares to a change in ρ under ad-
ditive preferences. Switching from additive to risk-sensitive preferences under a
10% tipping risk and for our benchmark calibration of the temporal risk aver-
sion (ϵ = 0.133) is equivalent to a 50% decrease in the value of ρ under additive
preferences. In other words, the optimal policy derived from risk-sensitive prefe-
rences for our benchmark calibration (ϵ = 0.133, η = 1.5, ρ = 1.5%) and under
a 10% tipping risk is obtained under additive preferences when ρ = 1% other
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things being equal. Figure 2 (right) shows that it takes a 14% shock for the ad-
ditive preferences to give the same SCC as for a 10% irreversible increase in the
damage factor under risk-sensitive preferences. The difference between the two
approaches becomes more pronounced as the level of risk intensifies.
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FIGURE 1.2 – Equivalence in ρ (left) and J (right) needed to obtain the same SCC at initial
time under additive and risk-sensitive preferences under our benchmark calibration

On the left, we represent the pure time preference (ρ) that is needed under additive preference
(all else being equal) to match the risk-sensitive SCC for various J. On the right, we represent the
irreversible shock J that is needed under additive preference (all else being equal) to match the
risk-sensitive SCC for various J. The dotted line from the right-hand graph is the identity function.

The numerical estimation of the channels analytically depicted in section (3)
provides an understanding of the channels through which a tipping risk affects
a temporally risk-averse planner. In our analytical decomposition, we firstly de-
rived the channels through which a marginal increase in the policy variable de-
parting from the optimum affects welfare in the next period under a tipping risk
and for a risk-sensitive planner. Thus, we have left aside all future impacts on
subsequent periods in this immediate decomposition, in particular the impact of
a change in the policy variable on future probabilities of crossing the threshold.
Then, we have performed a full decomposition to take into account the impact of
this change in policy on welfare in all future periods : this is the complete decom-
position. We have shown that there are two channels through which tipping risk
can influence optimal policy : the marginal hazard effect (immediate and com-
plete) and the differential welfare impact (immediate and complete). We now run
a numerical estimation of these channels to understand how temporal risk aver-
sion may affect the channels through which the tipping risk affects the planner.
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FIGURE 1.3 – Marginal contributions to the SCC at initial time (in $) of the complete MHE
(left) and the complete DWI (right) under risk-sensitive preferences for various J and ϵ.

The scales for the two graphs are different because the two channels are several orders of magni-
tude apart. We give the same graphs for the immediate decomposition in 4.

We can draw two conclusions from Figure 3. First, we see from our numerical
estimation that the main channel is the marginal hazard effect. Indeed, the plan-
ner is ready to give up welfare in order to reduce all present (immediate) and
future (complete) probabilities of crossing the threshold. This is partly due to the
setting generally chosen in the literature to represent tipping points, as we do not
model adaptation as an endogenous choice, which could for example decrease
the level of damage J. Whether some form of adaptation can decrease the da-
mage of such regime shifts remains uncertain, thus justifying its exclusion from
our framework. The second conclusion from the numerical estimation is that the
marginal hazard effect channel is increasing in the possible shock and in temporal
risk aversion. A higher temporal risk aversion increases the stringency of the op-
timal policy, as highlighted above, and decreases even further the relative weight
of the differential welfare impact in comparison with the marginal hazard effect.

5 Discussion

We study in an integrated model with a stochastic tipping risk the role of ab-
solute risk aversion with respect to intertemporal utility, i.e. temporal risk aver-
sion. We compare the optimal climate policy arising from the expected discoun-

61



ted utility model to a risk-sensitive social welfare function exhibiting temporal
risk aversion. A temporally risk-averse social planner maximising the welfare of
successive generations prefers to lower the possibility of an irreversible damage
bearing on all subsequent generations. In this sense, she adopts a social risk di-
versification strategy to hedge against potential environmental regime shifts.

First, while the two social welfare functions yield the same optimal climate
policy in a risk-free setting, they differ once a tipping risk is introduced. As-
sumptions regarding the structure of the social welfare function appear as least
as important as the debated value of some parameters in the expected utility mo-
del, such as the damage from a tipping point or the value of pure time prefe-
rence. It should be emphasized that the assumption of temporal risk neutrality
embedded in expected utility, while justifiable in risk-free models with smooth
climate change, may not adequately capture possible non-linearities and abrupt
regime changes in the climate system, which have been extensively documen-
ted in climate science (Arias et al., 2021). Ignoring temporal risk aversion may
lead to underestimating the severity of climate risks and result in more lenient
climate policies. Therefore, considering temporal risk aversion becomes crucial
when studying correlated intertemporal social risks.

Second, optimal policy under temporal risk aversion is more stringent than
under temporal risk neutrality. The difference between the two social welfare
functions increases more than proportionally to the increase in the shock J or the
temporal risk aversion ϵ. For a 10% irreversible increase in the damage factor, the
SCC under temporal risk aversion is 30% higher than the SCC under risk neutra-
lity under our benchmark calibration. Our key take-away is that if one believes
that major catastrophes bearing large multiplier effects such as irreversible re-
gime shifts are possible, the social planner’s aversion towards those risks bearing
on intertemporal utility should be accounted for. On the other hand, if there is no
such risk or if the possible damage is low, then we should stick to the additive
model as it does not come with the ethical drawbacks catastrophe aversion bears.

The last conclusion is that optimal climate policy in our setting is mainly dri-
ven by the marginal hazard effect. The tipping risk affects optimal policy as the
social planner wants to reduce all present and future probabilities of crossing the
tipping point. This channel is increasing in the possible shock J and increasing in
the temporal risk aversion. The risk-sensitive planner is willing to give up more
wealth to avoid the catastrophic event.

Our analysis suffers three main limitations. Firstly, our model, although in-
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cluding a stochastic risk, suffers from the limitations often pointed out in inte-
grated climate-economy models : the specification of the damage function, the
exogenous technological change dynamics and the assumptions regarding future
growth are for example uncertain. Secondly, our representation of tipping points
is limited, as we focus on a single tipping point and do not consider various cha-
racteristics, such as their probability of occurrence, reversibility, abruptness, and
time horizons. Additionally, our tipping probability is solely a function of glo-
bal temperature, while other drivers, such as deforestation, can also contribute
to tipping points. These limitations leave room for further research to provide a
more comprehensive and precise representation of climate tipping points and da-
mages. Lastly, our model assumes known probabilities for the tipping risk. Under
ambiguity about the tipping points, a temporally risk averse planner might not
prefer higher diversification (Berger and Eeckhoudt, 2021).

Finally, we do not take any stance on what the right social welfare function
is. This question remains open to scientific and public debates. In particular, the
risk-sensitive social planner is not an expected utility maximizer. This may be de-
fensible as one may ‘accept the sure-thing principle for individual choice but not
for social choice, since it seems reasonable for the individual to be concerned so-
lely with final states while society is also interested in the process of choice’ (Dia-
mond, 1967). Temporal risk aversion helps us understand the specificity of the
social choice issue climate change raises when it is considered not as a linear and
smooth phenomenon, but as a phenomenon that can give rise to non-linearities
and abrupt regime changes. A future research avenue could be to elicit the value
that individuals would give to this parameter in the context of normative inter-
generational social choice.

If our analysis is applied to a stylized climatic tipping risk, we believe that
risk-sensitive preferences and temporal risk aversion might be used for the study
of more standard smooth risks, as long as they are endogenous and correlated.
Indeed, as risk-sensitive preferences exhibit preference for catastrophe avoidance
when the social planner has temporal risk aversion, they comply with a wea-
ker pareto axiom in comparison with additive preferences (Bommier and Zuber,
2008) : this axiom states that there is no difference between the social planner’s
and the individuals’ preferences as long as uncorrelated risks are considered, but
that some divergence may occur when correlated risks are at play. This intertem-
poral social choice criterion might thus bear critical implications for the mana-
gement of correlated risks, for instance the large aggregate social risks due to
potential ecological thresholds (e.g. biodiversity collapse).
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6 Annex

1 Analytical decomposition details

We follow Lemoine and Traeger (2016) to find an analytic approximation of
how the risk-neutral channels adjust under temporal risk aversion. In addition,
we disentangle mpre from dwi. Starting from expression of mheadd and mhers in
equation (1.7) and (1.9), we write :

mhers
t+1 =

∂ht+1

∂St+1

∂St+1

∂µt

(
ϕ(Vpre

t+1)− ϕ(Vpost
t+1 )

ϕ′(Ve f f
t+1)

)
(1.14)

Thus :

mhers = mheadd
ϕ(Vpre)− ϕ(Vpost)

ϕ′(Ve f f )(Vpre − Vpost)︸ ︷︷ ︸
adjmhe

(1.15)

and recall that ϕ(V) = (1 − exp(−ϵV))/ϵ. A second order Taylor expansion for
ϕ(Vi) around ϕ(Ve f f ) gives : ϕ(Vi) ≈ ϕ(Ve f f )+ϕ′(Ve f f )[Vi −Ve f f ]+ 1

2 ϕ′′(Ve f f )[Vi −
Ve f f ]2 + O([Vi − Ve f f ]3). We have :

ϕ(Vpre)− ϕ(Vpost) ≈ ϕ′(Ve f f )[ϕ(Vpre)− ϕ(Vpost)] + 1
2 ϕ′′(Ve f f )[(Vpre)2 − (Vpost)2 + 2Ve f f (Vpost − Vpre)]

(1.16)
And :

adjmhe ≈ 1 +
(
−ϕ′′

ϕ′

∣∣∣∣
Ve f f

[
Ve f f − Vpre + Vpost

2

]
(1.17)

This yields our final expression for the adjustment implied by temporal risk aver-
sion on mhers. Expression for dwiadd is in equation (1.7). For dwirs in equation (1.9),
we use a more restricted expression than Lemoine and Traeger (2016). Indeed, we
exclude mpre from dwi and consider only the differential impact of a marginal
increase in the pre and post tipping if the tipping point is actually crossed (with
probability h). The expression writes :

dwirs
t+1 = ht+1

∂St+1

∂µt

(
ϕ′(Vpre)

ϕ′(Ve f f )

∂Vpre
t+1

∂St+1
− ϕ′(Vpost)

ϕ′(Ve f f )

∂Vpost
t+1

∂St+1

)
(1.18)

Then, we can write :

dwirs
t+1 = dwiadd

t+1 + ht+1
∂St+1

∂µt

([
ϕ′(Vpre)

ϕ′(Ve f f )
− 1
]

∂Vpre
t+1

∂St+1
−
[

ϕ′(Vpost)

ϕ′(Ve f f )
− 1
]

∂Vpost
t+1

∂St+1

)
(1.19)
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We do a first-order approximation of ϕ′(Vi) for i ∈ {pre, post} as Lemoine and
Traeger (2016), assuming that the tipping point does not cause too large a wel-
fare loss, to obtain ϕ′(Vi)

ϕ′(Ve f f )
− 1 ≈ ϕ′(Ve f f )+ϕ′′(Ve f f )[Vi−Ve f f ]

ϕ′(Ve f f )
− 1 ≈ −ϵ(Vi − Ve f f ).

This approximation, together with equation (1.19), yields equation (1.10b). Fi-
nally, equation (1.10c) is derived from equations (1.7) and (1.9).

2 Numerical resolution

We solve our recursive programs using dynamic programming. For each so-
cial welfare function, we approximate the value function in the post-tipping world
and then in the pre-tipping world using the solution from the post-threshold pro-
blem. We interpolate recursively starting from the last period and approximate
the unknown value functions with Chebyshev polynomials. We choose a 10−3

tolerance for the solver : our result is not affected by stricter tolerance. In each
regime (pre- and post-tipping), the value functions are expected to be smooth as
the tipping risk is the only risk we consider. We use a four-degree complete Che-
byshev approximation in the two-dimensional state space. Additional degrees do
not affect the results. The state variables are the carbon stock in the atmosphere
St and the stock of capital Kt at time t. The time-dependent approximation space
is defined around a deterministic growth path derived from the Ramsey formula.
Once we have interpolated recursively at each time step, we simulate the opti-
mal path for each control and state variable starting from the first period. In the
stochastic case with a tipping point, we run 1,000 simulations. An increase in the
number of simulations does not significantly affect the median path. A key ele-
ment is the definition of a terminal value in the program. The calculation is done
on a finite horizon (T = 600 years) as an approximation of the infinite program.
The terminal value is defined as the sum of all the period utilities from time T
to infinity. The assumption made is that consumption will grow for a constant
capital per efficient capita and total abatement, with a deterministic path for the
capital derived from Ramsey. The terminal constraint uses a modified discount
factor (Barr and Manne, 1967). The choice of the terminal value does not affect
the program : a 10% increase in the terminal value does not significantly affect
the optimal path. It writes :

TVF =
∆L u(c)

(1 − β(1 + GA))
δ
(

1−η
1−α

)
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with c the consumption for constant capital per efficient capita and total abate-
ment, β the discount rate, δ the time step, η the marginal utility parameter, α the
capital elasticity in the production function, and GA the annual growth rate of
productivity from the last period.

3 Risk-sensitive preferences and the risk premium

We show that the risk premium is positive for all ϵ under risk-sensitive prefe-
rences. We provide the share of the risk-sensitive SCC under expected damages
in the risk-sensitive stochastic SCC for various values of ϵ and J, and for our
benchmark η = 1.5, following Taconet et al. (2021). In particular, we numerically
demonstrate on the graph on the left below that the risk premium is positive for
all values of ϵ ∈ R+ under risk-sensitive preferences, unlike for EZW preferences.
Since some pure risk is already priced under additive preferences with η, we also
aim to highlight how much the risk premium is increased by temporal risk aver-
sion under our benchmark calibration : we plot on the graph on the right, for
different values of ϵ and under a benchmark of J = 10% and η = 1.5, the share of
the additive risk premium in the risk-sensitive risk premium :

100 ×
SCCadd

stoch − SCCadd
ed

SCCrs
stoch − SCCrs

ed
. (1.20)

The additive risk premium is always lower than the risk-sensitive risk premium
for all ϵ ∈ R+, i.e., when the social planner has temporal risk aversion.

On the graph on the left, we see that the share of expected damages in the
stochastic SCC is 50% for ϵ = 0.3. In the remaining 50% of the stochastic SCC
that are due to pure risk for ϵ = 0.3, we see on the graph on the right that the
pure risk already priced under additive preferences represents around 2% of the
risk-sensitive risk premium. Most of the risk premium under risk-sensitive pre-
ferences stems from temporal risk aversion.

4 Time paths

We provide some time paths for our key variables.
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FIGURE 1.4 – Share of the stochatic SCC that is explained by expected damages (in %)
(Left) Share of the risk-sensitive risk premium that is already priced under additive pre-
ferences (Right).

.
The lowest value explored for ϵ is 0.0001 and the share would converge to 100 for ϵ → 0 (Left).
The lowest value explored for ϵ is 0.0001 and the share would converge to 100 for ϵ → 0 (Right).
Both graphs are given for various ϵ and a benchmark J=10% and η = 1.5. The two graphs do not
have the same scale for ϵ as the share goes quickly to 0 for values above ϵ > 0.3 for the graph on
the right

.
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FIGURE 1.5 – Time paths of the mean temperature increase until 2100 under additive
(left) and risk-sensitive (right) preferences.

Values are for J=1% (up) and a J=10% (down), for ϵ = 0.133. We give the mean (solid line) and
[5% : 95%] confidence interval (shaded area) over 1.000 stochastic runs.
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FIGURE 1.6 – Time paths of the SCC until 2100 under additive (left) and risk-sensitive
(right) preferences.

Values are for J=1% (up) and a J=10% (down), for ϵ = 0.133. We give the mean (solid line) and
[5% : 95%] confidence interval (shaded area) over 1.000 stochastic runs.
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FIGURE 1.7 – Time paths of the abatement rate until 2100 under additive (left) and risk-
sensitive (right) preferences.

Values are for J=1% (up) and a J=10% (down), for ϵ = 0.133. We give the mean (solid line) and
[5% : 95%] confidence interval (shaded area) over 1.000 stochastic runs.
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FIGURE 1.8 – Mean time paths of the temperature increase in °C with respect to prein-
dustrial era (left), the SCC (middle) and the abatement rate (in %) (right) until 2100.

In the risk-sensitive case and for J=10% (J=1%), the tipping point is crossed 4.4% (22.8%) of the
1000 runs over the whole time horizon considered. In the additive case and for J=10% (J=1%), it is
7.4% (26.9%).
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5 Sensitivities

1 Upper temperature threshold

A lower probability of tipping decreases the difference between the two crite-
ria.
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FIGURE 1.9 – Ratio of risk-sensitive to additive SCC for a benchmark ϵ = 0.133, J = 20%
and various upper temperature threshold.

2 Higher tipping damage J

We give the same graph as in the main text but for a larger range of J.
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FIGURE 1.10 – Ratio of risk-sensitive to additive SCC at initial time for a benchmark
ϵ = 0.133 and various J.
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3 Inequality aversion

The log ratio of the SCC under risk-sensitive preferences to the SCC under
additive preferences increases with the elasticity of marginal utility.
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FIGURE 1.11 – Ratio of the SCC at initial time under risk-sensitive preferences on the
additive SCC. The graph is for benchmark calibration and for different J and η

4 Sensitivity - immediate decomposition

Immediate channels under risk-sensitive preferences for various J and ϵ.
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Chapitre 2

The need for regulation of climate subsystems

This article a is a joint work with Céline Guivarch (École des Ponts,
CIRED).

Understanding stochastic interactions between climate change, the macroeconomy and
Earth subsystems with non-linear, self-sustaining and debated dynamics is a major chal-
lenge with implications both for global climate policy and regional subsystem’s ma-
nagement. We study Earth subsystems with three properties : their dynamics have an
impact on climate change, climate change has an impact on their dynamics and their dy-
namics are not entirely determined by climate change. We analytically derive the three
channels through which interactions between subsystem’s idiosyncratic risk and aggre-
gate climate risk over intertemporal welfare affect optimal climate policy. First, sub-
systems have direct scaling effect through their expected feedback on global climate.
Second, perturbations in the subsystem caused by carbon emissions reduce its long-
term survival and therefore affect intertemporal welfare because of future feedbacks
on global climate. Third, subsystems have various insurance values. We also highlight
how an explicit reduced-form subsystems’s geophysical dynamics improves their ma-
nagement, taking into account the changing ability of the subsystems to self-perpetuate
over time : we introduce the social cost of the dynamic subsystem (SCDS). We apply
our framework in a calibrated stochastic quantitative model of the Amazon rainforest
whose fate is fiercely debated. In our benchmark quantitative specification, an endoge-
nous and explicit modeling of the Amazon rainforest implies a 15% risk premium on
the social cost of carbon (SCC) at the global scale and a SCDS that is worth 16% of the
standard stochastic SCC. These results imply that a 24% increase in the marginal value
of a tCO2 stored in the rainforest should be applied in local cost-benefit analysis.

Keywords : dynamic stochastic climate-economy model, robust environmental
policy, Amazon rainforest, climate tipping elements, scientific uncertainty, risk,
climate beta.

JEL classification : D61, D63, D71, D81, Q54, Q58.

a. Computations were performed on the IPSL ESPRI mesocenter. Special thanks to
Philippe Ciais and Thomas Gasser for their invaluable help in advising us on the quan-
tified part on the Amazon rainforest : this paper owes them a great deal. We also thank
Adrien Bilal, Delphine Clara-Zemp, Johannes Emmerling, Célia Escribe, Eli Fenichel,
Emmanuel Gobet, Allan Hsiao, Simon Jean, Vincent Martinet, Aurélie Méjean, and Sté-
phane Zuber for fruitful discussions or comments on earlier versions of this work. Cor-
responding author : Romain Fillon. 77



1 Introduction

The Earth and human societies are complex systems with non-linear stochastic
dynamics, entangled through time and space. Our knowledge of the climate sys-
tem and the interactions of its components has made significant progress, even if
it remains subject to scientific debate. Meanwhile, economic models usually rely
on a stylized representation of climate change where feedbacks between global
climate change and subsystems such as tropical rainforests are either omitted,
deterministic or modeled as a generic catastrophe with no geophysical represen-
tation, even in reduced form. Yet, impacts of climate change on these subsystems
are stochastic : for instance, the law that describes how more frequent occurence
of droughts under changing climate might affect tree losses in the Amazon rain-
forest is not deterministic (Anderson et al., 2018). Furthermore, the possible col-
lapse of these subsystems is more complex than a probability defined ex ante :
because of vegetation-rainfall feedbacks (Zemp et al., 2017a), a decrease in forest
cover could for instance yield an abrupt partial dieback that is not a linear func-
tion of an additional CO2 emission or an additional hectare of deforestation. In
this paper, we analyze and quantify how moving beyond these simplifications
yields fruitful insights for decision-making regarding adaptation and mitigation
under a changing climate endogenous to our economic activities.

We focus on climate subsystems that have three properties. First, global cli-
mate change has an impact on their dynamics, e.g. through changes in the drought
regime under a changing climate for the Amazon rainforest. Second, our subsys-
tems have an impact on global climate change : indeed, rainforests can for ins-
tance store and release carbon. Both impacts can be positive or negative. Third,
subsystem’s dynamics cannot be simply deduced from climate change, because
of inertia, self-sustaining dynamics or feedback effects : for instance, the Ama-
zon rainforest recycles part of its precipitation to feed its own growth through
evapotranspiration. Examples of Earth subsystems are for instance climate tip-
ping elements (Armstrong McKay et al., 2022). Examples of Earth subsystems of
relevance to this study also include other subsystems that do not have tipping be-
havior, such as the South-Eastern Asian rainforest and its feedback on the global
carbon cycle or El Niño La Niña and its impact on intra- and inter-annual natural
climate variability.

We build a dynamic climate-economy model, extending a well-established li-
terature studying optimal policy under climate risks (Golosov et al., 2014; Cai
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and Lontzek, 2019; Folini et al., 2024). In comparison with previous work, we ex-
plicitely include a stylized climate subsystem with its own dynamics as a state
variable of our program, e.g. the current forest cover of the Amazon, and model
its stochastic interactions with climate change. Introducing a stylized subsystem
has important implications both for optimal climate policy and regional subsys-
tem management.

First, a key question for optimal climate policy is to know if and to what
extent subsystem’s idiosyncratic risk affects aggregate climate risk bearing over
intertemporal welfare. Indeed, the feedbacks brought by these subsystems on
global climate might not have the same social value for different states of the
world where they might occur, which depend on their own dynamics, its interac-
tion with climate change with possible thresholds and the timescales over which
transitions to different states occur for the subsystem. Furthermore, while some
subsystems are expected to decrease global and regional temperatures if global
temperature increases, e.g. southern boreal forest dieback or Labrador-Irminger
seas/Subpolar Gyre oceanic convection collapse, some others are expected to in-
crease temperatures under warming climate, e.g. abrupt permafrost thawing or
Arctic winter sea ice collapse (Armstrong McKay et al., 2022) : the subsystems
have different insurance value with respect to intertemporal utility. Without loss
of generality, we analytically derive the channels through which our subsystem
changes optimal policy using value function decomposition. As in the climate
economics literature inspired from asset pricing (Dietz et al., 2018; Lemoine, 2021;
Van den Bremer and Van der Ploeg, 2021), we depict how the social cost of car-
bon (SCC) is affected by different components when accounting for climate risks,
thinking of the subsystem as a climate asset that can increase or decrease aggre-
gate risk of the wider climate portfolio.

We show that an Earth subsystem affects climate policy through three chan-
nels. First, it scales multiplicatively the standard certainty equivalent and pre-
cautionary channels driving SCC depending on how and how much its feedback
affects global climate change. Second, a marginal change in the subsystem’s state
brought by a marginal emission today yields an additive change in optimal policy
because of the marginal impact of this change in the future dynamics of the sub-
system on the continuation value. Third, an insurance channel, i.e. a ‘subsystem
beta’, increases the SCC if the subsystem has a larger feedback effect on global cli-
mate change in the states of the world where a marginal emission has the largest
impact on intertemporal welfare.

Second, an important question for optimal subsystem management is to ana-
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lyse and quantify how a marginal variation in the state of the subsystem affects
intertemporal welfare. Indeed, a marginal change in the subsystem’s state has a
first-order impact on optimal policy as it changes global temperatures, for ins-
tance because of carbon releases from the Amazon rainforest. But a marginal
change in the subsystem’s state also has a second-order impact on optimal po-
licy as it affects the growth of the subsystem in all future periods. We introduce
the social cost of the dynamic system (SCDS) : it measures in present monetary
terms the intertemporal social cost of a marginal decrease in the subsystem’s state
today, which captures the extent to which the future subsystem’s ability to self-
perpetuate changes with a marginal change in its current state. The decrease in
the subsystem’s ability to self-perpetuate increases aggregate risk bearing over in-
tertemporal welfare through future feedbacks of the subsystem on global climate.

We apply our framework to the debated fate of the Amazon rainforest in a
stochastic quantitative model. We focus solely on its value as a carbon stock. This
subsystem has a major regulating function for the Earth. At the global scale, it
acts as a carbon sink of ∼ 123 ± 23 GtC biomass (Malhi et al., 2006). This repre-
sents a significant 39% (± 7%) of the remaining budget to keep two chances out
of three of limiting global warming to 2°C according to IPCC (Masson-Delmotte
et al., 2021). The Amazon rainforest is therefore very valuable. But the Amazon
rainforest is in danger as a result of human actions. A combination of forest de-
gradation, deforestation, climate change and feedback effects may cause a partial
dieback of the rainforest (Lovejoy and Nobre, 2019). The direct human impact,
through deforestation and degradation, is attracting a lot of attention among eco-
nomists (Balboni et al., 2023), and for good reasons. But human activities also
affect the rainforest indirectly through climate change. Anthropogenic climate
change is expected to change precipitation patterns, especially make extreme
droughts which generate tree mortality and carbon losses (Phillips et al., 2009;
Yao et al., 2022) more frequent. A ton of carbon emitted in Europe or Asia thus
has an impact on the rainforest. In turn, the forest increases the damage of fu-
ture climate change in Europe and Asia, as it might release carbon under chan-
ging climate. In particular, the rainforest feedback might be the largest in states
of the world where cumulative emissions have the largest impact on aggregate
welfare, thus increasing aggregate risk bearing over intertemporal welfare. Fi-
nally, vegetation-rainfall feedback effects limiting the recycling of water by the
forest, i.e. forest’s own dynamics, may magnify these human-induced perturba-
tions (Zemp et al., 2017b). This self-sustained dynamics arising from temporal
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autocorrelation, in which decisions in some part of the forest affect other parts be-
cause of spatial autocorrelation, is usually neglected in local cost-benefit analysis
or in dynamic discrete choice approaches (Souza-Rodrigues, 2019; Araujo et al.,
2020; Hsiao, 2021). Finally, the fate of the Amazon rainforest is not only risky, it
is also uncertain. Aside from standard risk scenarios, where future state proba-
bilities are known, uncertain situations are situations in which there is no unani-
mous probability assignment due to insufficient information or competing data-
sets, models, or expert opinions. Indeed, projections of rainfall patterns under cli-
mate change differ depending on the climate model used (Kent et al., 2015). Fur-
thermore, there are debates about whether feedback effects might yield a tipping
point in the Amazon rainforest (Flores et al., 2024). We calibrate the perturbations
to the dynamics of the rainforest with three components : exogenous deforesta-
tion and degradation scenarii (Aguiar et al., 2016; Matricardi et al., 2020), bias-
corrected downscaled output on monthly precipitation from hydrological model
MATSIRO for four ISIMIP earth system models (IPSL-CM5A-LR, HadGEM2-ES,
GFDL-ESM2M, MIROC5) forced with future emissions from three different Sha-
red Socioeconomic Pathways (SSPs) and historical observations of the impact of
droughts on tree losses (Phillips et al., 2009; Yao et al., 2022). Given these ca-
librations, we jointly calibrate the remaining parameters of the Lotka-Volterra
equation describing tipping behavior of tropical forests in Ritchie et al. (2021) to
match the central estimate of the core expert probability assessment of Kriegler
et al. (2009). Finally, we use both discounted expected utility and a more flexible
smooth ambiguity criterion (Berger et al., 2017; Barnett et al., 2020) as a sensiti-
vity check to measure how our collective attitudes towards risks and scientific
uncertainties might affect optimal policy estimates.

Our approach yields two key methodological insights for the Amazon rainfo-
rest. First, the social cost of carbon (SCC) should include the impact that a mar-
ginal increase in cumulative emissions at the global scale has on the dynamics of
the rainforest. This includes a scaling of current policy by the carbon releases from
the Amazon rainforest under changing climate, an additive risk premium in the
SCC from the perturbation on the present and future dynamics of the rainforest
and an insurance channel, the positive ‘amazon beta’, because the carbon releases
occur in states of the world where carbon emissions have the largest marginal im-
pact on intertemporal welfare. Second, the social value of the Amazon rainforest
as a carbon stock cannot be reduced to the amount of carbon it contains : the
social cost of the dynamic system (SCDS) matters too, i.e. the cost of a marginal
decrease in subsystem’s state because of its reduced ability to self-perpetuate.
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These methodological results yield two key policy insights. First, decision-
makers should augment the social cost of carbon (SCC) from the impact of a mar-
ginal emission on the Amazon rainforest, that further releases carbon. Emitters
around the world should pay for the welfare impact of their emissions : the wedge
between standard SCC and SCC with endogenous amazon feedback could be le-
veraged to finance payment for ecosystem services for the preservation of the
rainforest. In our benchmark specification, we show that this wedge represents
15% of the standard SCC under aggregate climate risk. Second, the social value
given to a hectare of rainforest should not be only the standard social cost of car-
bon SCC, but the sum of the amazon-augmented social cost of carbon and the
social cost of the dynamic system SCDS. Indeed, a marginal decrease in the forest
cover has a first-order welfare impact, as it releases carbon, but also a second-
order impact on the future dynamics of the subsystem as a whole. Under our
benchmark specification, SCDS represents 16% of the standard stochastic SCC.
Our theoretical work can therefore be operationalized in local cost-benefit analy-
sis of deforestation and be used in complement to the significant progress in the
quantification of carbon stored at the finest scale via satellite observation. Indeed,
we show that the valuation of one tCO2 of carbon stored in the forest should be
increased by 24% in local cost-benefit analysis to reflect the true risk premium on
intertemporal utility that this marginal change in its state and corresponding car-
bon releases represent. This scaling factor corresponds to the sum of the increase
in the SCC due to the endogenous modelling of the rainforest dynamics and its
interaction with global climate risk, and the share of the SCDS that corresponds
to the marginal impact on intertemporal utility of a marginal change in subsys-
tem’s state. We believe that our framework could be extended to other climate
subsystems to inform policy decisions at the global and regional scales.

To our knowledge, we provide the first analytical study of the stochastic in-
teractions between the macroeconomy, climate change and a climate subsystem
and the first quantitative study of the Amazon rainforest in a global perspec-
tive in a dynamic stochastic climate-economy model with an explicit geophysical
representation of its uncertain dynamics. We contribute to different strands of
literature. First, we bridge the gap between a literature using stochastic climate-
economy models with stylized climate risks, e.g. Cai and Lontzek (2019), and
a literature using deterministic models with explicit geophysical dynamics, e.g.
Nordhaus (2019); Dietz et al. (2021a). Thus, we contribute, along with others e.g.
Dietz et al. (2021b), to a better understanding of the impact of climate dynamics
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on economic decisions. Second, we bring together complex numerical stochas-
tic climate-economy models with analytical decompositions that allow to iden-
tify the precise channels through which climate risks affect optimal policy (Le-
moine, 2021). In comparison with a prolific literature using more stylized ap-
proach where the tipping risk is a probability to switch from one qualitative state
to another one (Lemoine and Traeger, 2014; Fillon et al., 2023), we have a more
complex dynamics as the subsystem is a state in our dynamic program. Our de-
composition also relates to the debates on the ‘climate beta’ (Dietz et al., 2018)
and on how climate mitigation affects aggregate risk bearing on intertemporal
welfare. Third, we contribute to the literature on the modeling of complex non-
linear socio-ecological systems (Levin et al., 2013). Indeed, we model the catas-
trophic outcome as an emerging property of the dynamic system with an explicit
reduced-form geophysical representation, in line with bifurcation theory (Ritchie
et al., 2021). We depart from perturbation approaches considering small risks
(Van den Bremer and Van der Ploeg, 2021), ad hoc probability assignments (Cai
and Lontzek, 2019) or macroeconomics literature on disasters considering rever-
sible extreme events that occur as one-off catastrophes along a smoothly evolving
climate regime with fluctuations, traditionally modeled with Poisson and Wiener
processes (Hong et al., 2023). Indeed, our framework allows a possible abrupt
dieback of the rainforest, which raises numerical challenges : following insights
from Cai (2019), we use simplicial Chebyshev polynomials and break one level
of ‘curse-of-dimensionality’ related to approximation nodes with parallel CPU
computing. Fourth, we contribute to the literature on the Amazon rainforest :
in comparison with most approaches focusing on deforestation (Balboni et al.,
2023), we consider the impact of climate change on the rainforest and model the
dynamics of the subsystem as a whole. We take a welfarist approach at the global
scale to provide estimates of the marginal value of an hectare of rainforest ta-
king into account the impact that a marginal change has on all other parts of the
forest. Finally, we contribute to the literature on robust social choice criteria for
social decision-making under climate risks and uncertainties (Berger et al., 2017;
Barnett et al., 2020, 2022). Beyond stochastic risk in climate and economic mo-
dels, i.e. the distribution of a stochastic variable of interest within a given model,
there are large scientific controversies between models, for instance on climate
tipping points, their mechanisms, thresholds, timescales, for which authors pro-
vide confidence assessments (Armstrong McKay et al., 2022). The disagreements
on the right modelling approaches to climate tipping elements yield debates on
their possible economic consequences (Keen et al., 2022). These scientific disa-
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greements and heterogeneous confidence in assessments on climate dynamics
should be taken into account when making social choice, at least as a robustness
check on our best policy estimates. Alongside a more in-depth modeling of cli-
mate risks, a key issue for public and scientific debate is indeed to provide grea-
ter flexibility in the attitudes towards these risks. Our approach allows for a clear
distinction, using a two-step approach, between the purpose of the risk and our
attitudes towards it.

In the first analytical part, we study through value function decomposition
how our modelling approach of climate subsystems affects both global climate
policy and regional subsystem’s management. In the second numerical part, we
apply this general framework and calibrate a dynamic stochastic climate-economy
model with an explicit modelling of the Amazon rainforest.

2 Modeling approach

We build a dynamic climate-economy model, extending a common frame-
work used in the economics literature to study optimal climate policy (Cai and
Lontzek, 2019; Dietz et al., 2021a). We augment the model with a stylized repre-
sentation of a subsystem of the Earth system whose uncertain dynamics interacts
with global climate change. We study optimal policy under two distinct social
choice criteria. The first criterion is the expected utility criterion : the social plan-
ner chooses between prospects by comparing their expected utilities. The second
criterion (Klibanoff et al., 2005; Hayashi and Miao, 2011) allows to disentangle
preference over time, over states of the world and over scientific models of the
world. We highlight analytically how the subsystem might affect optimal global
climate policy and suggest a measure for optimal regional management of this
subsystem.

1 A dynamic climate-economy model

Our model has three ingredients : the macroeconomy, climate change, and
an earth subsystem. This study focuses on their dynamic interactions. The three
corresponding variables are net output Y, global surface temperature T, and the
current state of the dynamic subsystem relative to its initial state A. The indivi-
dual dynamics of these systems might be stochastic, for example due to other
economic risks such as uncertain future technological change, but we focus on
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stochasticity in the interactions between these dynamic systems. We do not mo-
del the interactions between the macroeconomy and the subsystem : we focus
on the additional feedback the subsystem brings on global climate change. Other
impacts are for instance regional health effects or loss of use and non-use values
from the subsystem, but we focus on the first-order market impacts on global wel-
fare through global climate change. Furthermore, while some subsystems have
an impact via other channels, for instance rainfall changes under Atlantic Meri-
dional Overturning Circulation (AMOC) collapse, our climate variable is global
annual mean temperature. Alternative climate indicators could be used depen-
ding on the specific risk of each subsystem while keeping the same framework.
Our framework also makes it possible to consider extensions, for example if se-
veral subsystems interact (Cai et al., 2016). Finally, we do not model impacts of
the subsystems on regional temperature separately from global impacts, because
they are of different magnitude but of the same sign. The framework could be
extended to integrate this additional mechanism.

This set of assumptions leaves us with four key interaction channels between
the macroeconomy, aggregate climate change and the stylized earth subsystem.
First, climate change affects economic output (∂Y/∂T) through a global damage
function. Second, economic output affects global climate change (∂T/∂Y) through
emissions that can be abated at a given cost and add up to a cumulative emissions
stock. Average surface temperature is a linear function of this cumulative emis-
sion stock through transient climate response to cumulative emissions. Third,
subsystem’s dynamics affects global climate change (∂T/∂A). Finally, climate change
affects the subsystem’s state (∂A/∂T) through various mechanisms which can be
presented in a reduced-form approach with credible geophysical dynamics and
an explicit calibration. These four channels are four components through which
stochastic risk affects optimal policy. The two first channels, i.e. damage uncer-
tainty and uncertainty in the transient climate response to cumulative emissions,
are already well studied in the climate-economics literature and not specific to
the study of subsystems. Instead, the question of the interaction of aggregate cli-
mate risk on intertemporal welfare with idiosyncratic subsystem risk is of inter-
est to us. The two last channels, especially the fourth and most important one
which determines whether or not there will be feedbacks between global climate
change and the subsystem, are usually modeled (Nordhaus, 2019; Dietz et al.,
2021a) as deterministic or with ad hoc probabilities. Furthermore, the dynamics
of the subsystem itself is in general not represented, even though there are im-
portant debates and scientific uncertainty about its shape that matter for optimal
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social choice. We model a dynamic subsystem whose dynamics is risky, uncer-
tain, self-sustaining (e.g. a decrease in the subsystem’s state reduces its ability to
self-perpetuate) and interacts with global climate risk. We focus on two sources of
stochastic risk and their interaction : standard aggregate risk on the transient res-
ponse of global temperature to cumulative emissions (∂T/∂Y) and idiosyncratic
subsystem risk on the impact of global climate change on the subsystem (∂A/∂T).

Consider a system A whose dynamics is a function of its state and of climate
change. Let us assume that ϵ summarizes the impact of climate on the subsys-
tem through temperature. We have that : dA/dt = f (ϵ(T), A). Examples of such
stylized dynamics for slow-onset (AMOC collapse) or fast-onset (forest dieback)
tipping elements are given in Ritchie et al. (2021). Let us assume that this subsys-
tem’s dynamics has an impact on welfare : it can affect global climate change and
economic damages. But the system has a risky dynamics, as climate impacts on
the system are stochastic : dA/dt = f (ϵ̃(T), A). Furthermore, there are scientific
uncertainties, for instance on the transition law f of the dynamic system or on the
distribution of stochastic ϵ̃(T) linking climate change to changes in A. Different
models i and different models j give different transition functions and different
distributions respectively, so that : dAij/dt = fi(ϵ̃j(T), Aij). To make optimal de-
cisions, the planner takes into account the entire stochastic distribution of each ϵj

within each possible function fi and weights over the alternative models with a
given aggregation rule g, so that : dA/dt = g[dAij/dt] = g

[
fi(ϵ̃j(T), Aij)

]
. There

are m alternative models, i.e. m alternative combinations of i and j.

2 Social choice criteria

Social planner maximizes intertemporal welfare under endogenous climate
damages and subsystem’s dynamics. The state space is S . The state variables are
x = (A, T, Y). Γ(x) is the control set. Control is µ, the abatement rate. Following
Golosov et al. (2014), we assume a fixed savings rate. At time t, decision maker’s
information consists of history ωt = {ω0, ω1, ..., ωt} with ω0 given. The uncer-
tainty is described by the random m in the set M : a discrete indicator of alterna-
tive models for the subsystem. The decision maker has a prior χ0 over m. Each
m gives a probability distribution πm over the state space. The posterior χt and
conditional likelihood πm,t are obtained by Bayes’ rule.

Discounted expected utility Under expected utility, the reduction of com-
pound lotteries axiom states that χt and πm,t can be reduced to a single distri-
bution, i.e. the social planner is uncertainty neutral. The social planner’s welfare
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at time t writes recursively :

Ut(xt, ϵt) = max
yt

[
u(xt, yt) + δEχt,πm,t(Ũt+1(xt+1, ϵ̃t+1))

]
(2.1)

s.t xt+1 = G(xt, yt+1) and µt ∈ Γ(xt) (2.2)

with G the transfer function, Ũt+1 the random continuation value, ϵ̃ the sto-
chastic component, δ the discount factor and u the instantaneous utility, assumed
to be of the constant-relative risk aversion form with η the elasticity of marginal
utility : u(x) = x1−η

1−η .
This expected utility approach has two drawbacks. On the one hand, prefe-

rence over time and states of the world are entangled in η. On the other hand,
the social planner is uncertainty neutral : that may not be the most natural ap-
proach to decision-making under uncertainty (Ellsberg, 1961). Recent empirical
evidences suggest that policy-makers are uncertainty-averse (Berger and Bosetti,
2020). For robustness, we test how much our estimates for optimal global climate
policy and optimal regional subsystem management derived under expected uti-
lity depend on our collective attitude towards risk and uncertainty. Thus, our
second recursive criterion is a specific form of smooth ambiguity criterion that
allows to introduce uncertainty aversion from the social planner and to disen-
tangle intertemporal elasticity of substitution and relative risk aversion. Among
other social choice criteria used to study risk and uncertainty, we use a form of
recursive smooth ambiguity model for three reasons. First, these preferences are
an extension of the expected utility model which makes the comparison with this
framework more readable : as in this model, the flaw is that we have to define
subjective probabilities for the different models. We assume that each model has
an equal probability of being the ‘right’ one. The second reason is that this crite-
rion allows a separation between the object (risk and uncertainty) from our atti-
tude towards it (risk and uncertainty aversions). Thus, comparative statics with
varying (risk) uncertainty aversion and constant (risk) uncertainty levels can be
undertaken, whereas it is entangled in the penalty parameter in robust control
(Hansen and Sargent, 2001). It is useful as our setting includes both risk and un-
certainty. The third reason is that, in comparison with robust control, this model
does not assume that the decision-maker has an approximate model and that the
‘real’ model is near this approximation.

Smooth-ambiguity With this criterion, χt and πm,t cannot be reduced to a
single distribution (Hayashi and Miao, 2011; Berger et al., 2017). This is the case
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here when the concave transformation h ◦ v−1 introduced below is non-linear,
yielding uncertainty aversion. Social planner’s welfare at time t writes :

Vt(xt, ϵt) = W(ut, u(Rt(Ṽt+1(xt+1, ϵ̃t+1)))) (2.3)

W(u, y) = u−1[(1 − δ)u + δy] (2.4)

Rt(Vt+1(xt+1, ϵt+1)) = h−1
[
Eχt

(
h ◦ v−1Eπm,t [v(Ṽt+1(xt+1, ϵ̃t+1))]

)]
(2.5)

under the same constraints. W : R2 → R is a time aggregator and R is an uncer-
tainty aggregator that maps an ωt+1-measurable random variable ϵ̃t+1 to an ωt-
measurable random variable. Eχt is the expectation operator taken at time t over
models, and Eπm,t is the expectation operator taken at time t over future welfare,
conditional on the model m. The three functions u, v and w are isoelastic, with θ,
γ and µ the inverse of the elasticity of intertemporal substitution, the relative risk
aversion and the relative uncertainty aversion. The two expectations highlight
the two-step bayesian approach. In the first stage, the social planner evaluates
the expected reward of a policy under each risky model and express it in mone-
tary terms through a certainty equivalent that depends on her attitude towards
risk. In the second stage, the policy maker evaluates an overall expected reward
across the various certainty equivalents depending on her attitude towards un-
certainty. The policy maker adresses risk within models, then uncertainty over
models.

3 Analytical definitions

1 Global scale - optimal climate policy (SCC & SCCDS)

In the remainder of this work, SCC (SCCSA) is the social cost of carbon under
expected utility (smooth ambiguity), SCCDS (SCC) is the social cost of carbon
when the dynamic subsystem is (not) included in the model. Without loss of ge-
nerality, consider the optimal SCC and SCCDS for a policymaker under expected
utility. For exposition, we focus on expected utility to highlight the various chan-
nels through which the subsystem affects optimal policy : same elements are de-
rived under smooth ambiguity in annex. We simplify the notation for the expec-
tation taken over stochastic risk and over models, reduced by compound lotteries
under expected utility. The shadow cost of emissions is the negative partial deri-
vative of the right-hand side of equation (2.1) with respect to time t emissions, St.
It is brought from intertemporal utility to present monetary terms when scaled by
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the marginal utility of consumption u′
c(ct) and a discount factor δ. We assume no

decay, so that ∂St+1
∂St

= ∂Tt+1
∂Tt

= 1. In our setting, we have stochastic aggregate risk
over transient response to cumulative emissions, ∂T/∂S, and idiosyncratic risk
over the subsystem’s dynamics, ∂A/∂T. We assume that the impact of the sub-
system on global temperatures goes through carbon releases rather than other
mechanisms as in our quantitative application. SCC and SCCDS write :

SCCt =
δ

u′
c(ct)

Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
(2.6)



SCCDSt =
δ

u′
c(ct)

Et

[
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

(
1 +

∂St+1

∂At+1

∂At+1

∂St

)]
︸ ︷︷ ︸

V1,t : temperature channel

+Et

[
∂Ut+1

∂At+1

∂At+1

∂St

]
︸ ︷︷ ︸
V2,t : subsystem channel



V1,t = Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
︸ ︷︷ ︸

Va
1,t : standard

Et

(
1 +

∂St+1

∂At+1

∂At+1

∂St

)
︸ ︷︷ ︸

Vb
1,t : subsystem scaling

+ cov
(

∂Ut+1

∂Tt+1

∂Tt+1

∂St+1
; 1 +

∂St+1

∂At+1

∂At+1

∂St

)
︸ ︷︷ ︸

Vc
1,t : insurance

(2.7)
Modeling an endogenous subsystem in a global climate-economy model and

its interaction with climate change implies a risk premium that can be decompo-
sed in two immediate channels : a subsystem channel and a temperature chan-
nel. First, marginal changes in the subsystem’s state, affected by current marginal
carbon emissions, have an impact on the continuation value : it is the subsystem
channel. Second, a marginal increase in carbon emissions affect next period tem-
peratures and future welfare, both through the global carbon cycle and with the
additional feedback on temperature from the subsystem : it is the temperature
channel. The temperature channel has three components : a change in the conti-
nuation value of the standard channel driving optimal policy, a scaling factor of
this same standard channel and an insurance component, the ‘subsystem beta’.

The standard channel driving optimal climate policy, ∂Ut+1
∂Tt+1

∂Tt+1
∂St+1

, is modified
when we account for the subsystem’s dynamics. In particular, ∂Ut+1/∂Tt+1 can
be decomposed in two components through a second-order taylor expansion de-
picted in annex : the certainty equivalent (CE) and the precautionary channel
(PC), following Lemoine and Rudik (2017) and Lemoine (2021). Most of the fu-
ture impacts on intertemporal welfare of a marginal carbon emission are included
in the continuation value Ut+1. We decompose these impacts further for all future
periods. Detailed in annex, the decomposition yields an expression for SCC and
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SCCDS :

SCCt =
δ

u′
c(ct)

Complete standard︷ ︸︸ ︷
∞

∑
i=t

δi−t Et
[
u′

S(ci+1)
]

(2.8)

SCCDSt =
δ

u′
c(ct)


Complete standard channel scaled︷ ︸︸ ︷

∞

∑
i=t

δi−t Ei
(
u′

S(ci+1)
)

Πi
l=tV

b
1,l +

Complete insurance channel︷ ︸︸ ︷
Vc

1,t +
∞

∑
j=t

δj−t+1 Vc
1,j+1 Πj

m=tV
b
1,m +

Complete subsystem channel︷ ︸︸ ︷
V2,t +

∞

∑
k=t

δk−t+1 V2,k+1 Πk
n=tV

b
1,n


(2.9)

Modeling an endogenous subsystem in a global climate-economy model and
its interaction with climate change implies a risk premium that can be decompo-
sed in three complete channels, accounting for present and future impacts. The
first term of equation (2.9) is the sum of all future marginal impact of an increase
in the carbon stock on instantaneous utility. The second term is the complete in-
surance channel. The last term is the subsystem channel at all future periods.
I describe the three scaled channels in detail below. The three channels driving
optimal policy are scaled by all present and future Vb

1,i when the subsystem’s dy-
namics is explicitely accounted for. Vb

1,i measures the sign and magnitude of the
additional present and future feedbacks the subsystem brings to climate change.
It increases (decreases) the SCCDS if (∂Si+1/∂Ai+1).(∂Ai+1/∂Si) is positive (ne-
gative), i.e. if the subsystem releases (absorbs) carbon when carbon concentration
increases.

Complete standard channel scaled The first term in the bracket in equation
(2.9) is the complete standard channel scaled. Introducing a climate subsystem
in a dynamic climate-economy model scales the standard channel driving opti-
mal climate policy by the present and future expected feedbacks this subsystem
brings on climate change, and thus on intertemporal welfare through climate da-
mages. The standard channel driving optimal climate policy is the sum on all
present and future period of the marginal derivative of instantaneous utility with
respect to a marginal increase in carbon concentration.

Complete insurance channel The second term in the the bracket in equation
(2.9) is the complete insurance channel. This insurance channel measures how the
additional feedback on climate change brought by the impact of climate change
on the subsystem’s dynamics covaries with the marginal impact of carbon emis-
sions from economic activity on intertemporal welfare at all present and future
period. This term Vc

1 is familiar from the consumption-based capital asset pricing
approach (Lucas Jr, 1978) and the climate-economics literature (e.g. Dietz et al.
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(2018), Lemoine (2021), Van den Bremer and Van der Ploeg (2021)) : agents re-
quire a greater expected return on assets which increase aggregate risk bearing
on future consumption 1. The left-hand side of this channel is the marginal effect
of a change in cumulative emissions on intertemporal welfare : it is negative. The
right-hand side of the covariance can be either positive if the marginal impact
of a change in carbon concentration 2 on subsystem’s state has the same sign as
the marginal impact of a change in subsystem’s state on carbon concentration,
or negative if they have opposite signs. All these states of the world are pos-
sible within the same model and for the same dynamic subsystem. In the first
case, the feedback of the subsystem on climate change is positive : a marginal in-
crease in carbon concentration brings an even larger temperature change because
of the change in subsystem’s dynamics. The causal mechanism stems either from
a growth effect (an increase in carbon concentration increases the subsystem’s
state which increases the temperature) or a degrowth effect (an increase in car-
bon concentration decreases the subsystem’s state which decreases temperature).
Examples of subsystem that have these cyclical properties are for instance cryos-
phere climate tipping elements (Armstrong McKay et al., 2022), such as the boreal
permafrost, and the Greenland, West and East Antarctic ice sheets. In the second
case, the feedback of the subsystem on climate change is negative : the effect of a
marginal increase in temperature on temperature is mitigated by the decrease in
temperature from the subsystem. Two causal mechanisms are possible : either a
growth effect (an increase in carbon concentration increases the state of the sub-
system which decreases the temperature) or a degrowth effect (an increase in tem-
perature decreases the subsystem which increases the temperature). Examples
of subsystem that have these countercyclical properties are for instance ocean-
atmosphere climate tipping elements, such as Labrador-Irminger Seas, Subpolar
Gyre (SPG) oceanic Convection and Altantic Meridional Overturning Circulation
(AMOC). If the feedback brought by the subsystem covariates positively (negati-
vely) with the impact of emissions on intertemporal welfare, then optimal policy
is relatively more (less) stringent when this ‘subsystem beta’ is accounted for.
The magnitude of the covariance depends on relative variations : for a positive

1. A parallel beta could be computed for scientific uncertainty, measuring how scientific un-
certainty about this subsystem’s dynamics and its interaction with climate change affects aggre-
gate scientific uncertainty about climate change. A positive beta-risk, i.e. when the subsystem in-
creases aggregate risk, should be decreased (increased) if the subsystem’s uncertainty decreases
(increases) aggregate scientific uncertainty, i.e. depending on subsystem beta-uncertainty (Izha-
kian, 2020).

2. In our analytical decomposition, we focus on temperature impacts through the carbon cycle,
but the demonstration would apply to other mechanisms.
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covariance, if the states of the world where the marginal effect of an additional
emission on welfare is relatively greater (smaller) are also the states of the world
where the right-hand side of the covariance is relatively greater (smaller), i.e. si-
tuation where the feedback of the subsystem on climate change is relatively more
positive (more negative), then the insurance channel increases the social cost of
carbon SCCDS more (less). This depends on subsystem dynamics, global climate
damage, global temperatures, etc.

Complete subsystem channel The third term in the the bracket in equation
(2.9) is the complete subsystem channel, i.e. the sum of all present and future im-
mediate subsystem channels V2,t scaled by the feedback of the climate subsystem
on global climate change. The complete subsystem channel measures how a mar-
ginal change in the subsystem’s state due to a marginal carbon emission affects
intertemporal welfare. A contemporary increase in carbon concentration and in
temperature has a stochastic impact on the subsystem. This impact can be some-
times positive, for instance if an increase in carbon concentration increases vege-
tation growth rates for rainforests because of fertilization effects. But the impact
of a marginal emission is mostly negative, as increases in carbon concentration
disrupts most climate subsystems (Armstrong McKay et al., 2022), such as the
Barents Sea Ice. This impact can also be alternatively positive or negative for a
given subsystem depending on its own dynamics or the current state of the cli-
mate system. A same marginal increase in carbon concentration does not have
the same impact along a given concentration pathway. For instance, a marginal
increase in carbon concentration at low concentration levels might increase the
vegetation growth rate for the Amazon rainforest through fertilization effects,
while an increase in carbon concentration at high concentration levels might put
the rainforest in great danger through changes in El Niño, a collapse in the At-
lantic meridional overturning circulation or temperature limits for the photosyn-
thesis (Doughty et al., 2023). A same marginal increase in carbon concentration
does not have the same impact depending on the state of the subsystem. For ins-
tance, while the Amazon rainforest might be resilient when not too disturbed,
because of plant trait diversity (Sakschewski et al., 2016) or evapotranspiration
by which the rainforest recycles the rainfall that will feed its future growth, these
characteristics that enhance resilience of the subsystem might weaken when the
subsystem’s state decreases in extent. All these characteristics of the impacts a
climate subsystem might have on intertemporal welfare are disregarded when
the subsystem is not explicitely a state variable of our program and its collapse
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represented as an ad hoc probability depending on carbon concentration.

Including a subsystem in a global climate-economy model and its interaction
with global climate change implies a risk premium that can be decomposed in
three components : a scaling of standard optimal policy measure, an insurance
component, and a subsystem component. Each of these channels is scaled by the
additional feedback the subsystem brings on global climate change in all present
and future periods.

2 Regional scale - optimal subsystem’s management (SCDS)

The social cost of the dynamic subsystem, SCDS, is the marginal impact on
intertemporal welfare of a marginal change in subsystem’s state, brought into
present monetary terms. In other words, a marginal change in the current state
of the subsystem has an impact on the future dynamics of the subsystem, which
matters because this future dynamics has an impact on future climate damages.
The subsystem has its own dynamics, which is not completely controlled by the
policy-maker. Our representation of the dynamics of the subsystem allows to
highlight and compute the SCDS. Without loss of generality, we derive the SCDS
under expected utility. The same formula is given in annex for smooth ambiguity.

Starting from the optimal policy program, we seek for the derivative of our
continuation value with respect to the subsystem’s state. In comparison with
SCCDS, we focus on the marginal derivative of the next-period continuation va-
lue with respect to next-period subsystem’s state. Indeed, the subsystem might
have short-term oscillatory behavior : thus, ∂At+1/∂At might have unstable va-
rying signs. Under moderate conditions, for instance along the optimal path, re-
ducing the subsystem’s stock could increase its short-term growth by for instance
reducing competition between patches of a forest, while still reducing its aggre-
gate long-term survival that is of interest to public policy. A short-term oscillation
∂At+1/∂At < 0 might thus bias the sign of the SCDS while we are interested in
the long-term behavior of our system, i.e. its marginal impact on aggregate inter-
temporal welfare. L is the initial value of the carbon stored in the subsystem in
our application ; this rescaling allows to translate marginal changes in the subsys-
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tem’s state to a standard carbon unit. The SCDS has two different components :

SCDSt =
1
L

δ

u′
c(ct)

Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

∂St+1

∂At+1

)
︸ ︷︷ ︸

W1,t : temperature channel

+ Et

(
∂Ut+1

∂At+1

)
︸ ︷︷ ︸

W2,t : subsystem channel

 (2.10)

The temperature channel measures the feedback of the subsystem on aggre-
gate climate change, i.e. how much a marginal change in the subsystem’s state
affects intertemporal welfare through its marginal impact on temperatures. The
subsystem channel measures how a marginal change in the subsystem’s state af-
fects intertemporal welfare : it includes all future risk on the dynamics of the
subsystem brought by a marginal perturbation in its current state, and thus all
future potential increases in aggregate temperatures and climate damages, inclu-
ding the most disastrous.

We have highlighted the channels through which our modelling approach af-
fects global climate policy and regional subsystem management. For illustration,
we apply our framework to the debated fate of the Amazon rainforest. We quan-
tify the impact of this specific subsystem on optimal climate policy in a dynamic
stochastic climate-economy model. We measure the impact of the interactions bet-
ween aggregate climate risk and amazon idiosyncratic risk and its explicit geo-
physical dynamics on optimal rainforest management. We compute the share of
each of the channels depicted analytically.

3 A quantitative application : the Amazon rainforest

We use a macroeconomic growth model à la Ramsey and add climate dyna-
mics (Guivarch and Pottier, 2018; Taconet et al., 2021; Fillon et al., 2023). We aug-
ment the model with a stylized representation of the Amazon rainforest whose
uncertain dynamics interacts with climate change. We focus on two sources of
stochasticity 3 that are of particular interest : standard aggregate climate risk re-
garding transient climate response to cumulative emissions on the one hand, i.e.
how much emissions from economic activity translates to climate change, idio-
syncratic stochastic impact of global climate change on forest dynamics on the

3. More stochasticity and states would be difficult to handle with global solution methods
without message passing interface on large computing clusters and would not provide more in-
formation on the mechanisms we want to highlight.
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other hand, i.e. how much climate change affects the carbon stored in the rainfo-
rest. In other words, we price the Amazon rainforest climate asset within a broa-
der risky climate portfolio. In addition to this stochasticity, we add an explicit
geophysical representation of forest dynamics. The dynamics of the rainforest is
self-sustaining, with possible feedback effects : a decrease in the forest cover de-
creases forest growth. This non-linear dynamics can generate some curvature in
our value function in one dimension of our program. We include scientific un-
certainty over both the functional form of this dynamics and on the impact of
climate change on the rainforest, i.e. alternative scientific models embedded in
our social choice. We identify key mechanisms and channels through which risks
and uncertainties about the impact of global climate change on the rainforest af-
fect optimal climate policy at the global scale and optimal rainforest management
at the regional scale. We solve our recursive programs using dynamic program-
ming : we interpolate recursively starting from the last period terminal value
function and approximate our value functions with simplicial Chebyshev poly-
nomials and adaptive approximation domains for our state variables (Cai, 2019).
We employ simplicial Chebyshev polynomials, as they enable varying degrees of
approximation across different dimensions of our dynamic problem : less preci-
sion is required for approximating the smooth dynamics of capital accumulation
compared to the more complex dynamics of the Amazon rainforest. We break
one level of ‘curse-of-dimensionality’ related to approximation nodes with paral-
lel CPU computing for value function interpolation. Once we have interpolated
recursively at each time step, we simulate 100 stochastic paths for each specifica-
tion and use the mean path for each variable of interest.

1 Model specification

Economic model One global region produces at each period t a single good
using capital K and exogenous labour L through a production function F(K, L),
with exogenous Hicks-neutral technological change from Nordhaus (2018). Ca-
pital dynamics is determined by the per-period capital depreciation δ and sa-
vings rate s : Kt+1 − Kt = −δKt + Ytst. We assume a fixed savings rate st = αδ,
where α is the share of capital in the Cobb-Douglas production function and δ

the discount factor. Net output Y is derived from gross output net of damage :
Y = Ω(T)F(K, L). The damage factor is increasing in temperature. Net output
induces emissions, which can be mitigated at a certain cost : E = σY(1 − µ) with
µ the abatement rate and σ the carbon content of production that decreases exo-
genously over time (Nordhaus, 2018). The emissions adds up to a global cumu-

95



lative emissions stock S and we assume no decay. The social planner trades off
consumption and mitigation to maximize intertemporal welfare.

Climate model We use a simple representation for the climate system, with
a linear formula linking global temperature T to the stock of global carbon emis-
sions S through transient climate response to cumulative carbon emissions ψ, i.e.
∂T/∂S = ψ, as in Dietz and Venmans (2019). Following Barnett et al. (2020), we
assume a truncated normal distribution for ψ on the support [0 : 3.5] with a best
estimate of ψ̄=1.73°C per 1000PgC and a standard deviation of 0.493. Quadratic
climate damage to economic output Ω are derived from temperature changes.

Amazon rainforest The variable A used to represent rainforest’s dynamics is
the ratio of current carbon stored in the forest in comparison with the total pos-
sible carbon losses L = 75GtC (Armstrong McKay et al., 2022). We use a stylized
vegetation dynamics (Ritchie et al., 2021), where the dynamics of A is a function
of the current state A and of regional temperature Treg interacted with the sto-
chastic impact of climate on tree mortality via droughts ϵ̃. Treg is deduced from
global cumulative emissions stock via linear and time-invariant regional tran-
sient climate response to global cumulative emissions (Leduc et al., 2016). There
are two possible functional forms for the dynamics of the system : either without
( f1) or with ( f2) a feedback effect. There are four distributions for ϵ̃j because four
different climate models j are used to estimate how more frequent and intense
droughts are under changing climate. This yields a total of eight models : we give
each model m the same probability of being the ‘true’ one. The Lotka Volterra
equation writes :

dAij

dt
=


fi(ϵ̃j.Treg, Aij) with i ∈ {1, 2} , j ∈ [1 : 4] if t ≤ 2200

0 if t > 2200

(2.11)

with


f1(x) = g0

[
1 −

(
Treg(0)+Treg

β0

)2
]

x(1 − x)− ϵ̃jTregx − κx

f2(x) = g0

[
1 −

(
Υ[1−x]+Treg(0)+Treg)

β0

)2
]

x(1 − x)− ϵ̃jTregx − κx
(2.12)

where g0 is the forest growth rate under normal conditions, κ exogenous defores-
tation and degradation rates, Treg(0) regional temperature increase with respect
to preindustrial at initial time, Treg regional temperature increase with respect
to initial time, β0 half-width of the growth versus temperature curve, and Υ the
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temperature difference between bare soil and forest, driving the feedback. We
assume that regional transient climate response to global cumulative emissions,
from which Treg is deduced, does not depend on A, which should hold for any
optimal policy path where the rainforest is not too depleted.

2 Calibration

We use a standard calibration for the climate and macroeconomic modules :
a complete description is in annex. We use exogenous deforestation and degra-
dation scenarios. Our calibration is a two-step procedure. We first calibrate the
maximum impact of climate on the rainforest via droughts using climate model
projections and historical observations. Then, given these parameters, we jointly
calibrate the remaining parameters internally so that the probability of forest die-
back under a tipping risk (i.e. with functional form f2 that includes a feedback
effect in the dynamics) matches the central estimate of the core expert probability
assessment of Kriegler et al. (2009) for each of their temperature corridors. In par-
ticular, we calibrate the shape of the distribution of ϵ̃ between 0 and its estimated
upper bound. We then assume that the parameters and the distribution for ϵ̃ re-
mains constant for the other specification f1 where there is no tipping risk.

Exogenous deforestation and degradation κ At each t, a share κt of the forest
cover is deforested or degraded. We use the mean of three deforestation scenarii
(Aguiar et al., 2016). We assume that deforestation stops after 2050 as this is the
maximum horizon for most scenarios. We multiply the area deforested by two
to take into account forest degradation, including human-induced fires, based on
the historical relationship observed between deforestation and degradation (Ma-
tricardi et al., 2020). Scenarii are for the brazilian Amazon which covers 60% of the
extent of the rainforest : we scale the scenario and assume that they hold for the
whole rainforest. We convert the deforestation rate expressed in km2 in a share of
initial carbon storage, assuming homogeneity of the carbon stored over the forest.

External calibration - Endogenous climate change effects ϵ̃j via droughts We
model this link through four ϵ̃j based on the climate model j used to predict the
change in rainfall patterns. We assume that each ϵ̃j follows a Beta distribution on
a support whose upper limit ϵ̄j is estimated below. For the estimation of these
upper bounds, we exploit in each climate model the variation in local climate
conditions to measure how much carbon losses from tree mortality in the Ama-
zon increases with local temperatures. We build a balanced panel dataset until
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2100 along three representative concentration pathways (RCP 2.6, 6.0, 8.5) and
use 60 arc-minutes resolution gridded data from the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP) on monthly precipitation. We use precipitation
projections taken from the hydrological model MATSIRO for all possible climate
forcing models j : IPSL-CM5A-LR, HadGEM2-ES, GFDL-ESM2M, MIROC5. We
compute an index of precipitation stress, the yearly maximum cumulative water
deficit (MCWD) anomaly with respect to an historical baseline (1985-2004). We
match this precipitation data with bias-adjusted and downscaled gridded surface
temperature data specific to each climate forcing model. Data from historical ob-
servations (Phillips et al., 2009; Yao et al., 2022) established a link between MCWD
anomaly and carbon losses from tree mortality in the Amazon rainforest. We scale
these yearly carbon losses obtained for each climate forcing model by the spatial
heterogeneity observed in the carbon storage at initial time, taking data from Ear-
thData (NASA). Our preferred specification is a fixed-effect approach with year
and regional fixed effects and Driscoll and Kraay (1998) standard errors to ac-
count for heteroskedascicity and serial correlation. We control for sub-regional
diversity with Silva-Souza and Souza (2020) woody plant regionalization into 13
subregions. The dependent variable is the yearly carbon loss from tree mortality
(in tC/ha/y) at the cell level for each climate model, and the independent variable
is the local temperature observed over the same period (in °C). We estimate the
following equation :

Cj
i,r,t = β

j
carbonX j

i,r,t + α
j
i + δ

j
t + ζ

j
r + uj

i,r,t (2.13)

with u the pixel-specific error term, i the geo-coded entity (e.g. a pixel of our
grid whose resolution depends on the climate model j used), t the time period,
r the Silva-Souza and Souza (2020) subregions. β

j
carbon is our coefficient of inter-

est, α a vector of N-1 location-specific fixed effect and the constant, δ a vector
of time fixed effects and ζ our vector of region-specific fixed effects to account
for clusters in our data. We obtain our coefficient of interest β̂

j
carbon for four cli-

mate models. We multiply β̂
j
carbon by the size of the rainforest, ≈ 700 million ha

(Silva-Souza and Souza, 2020), to obtain the yearly loss of carbon per additio-
nal degree of local temperature for each model j. We express this coefficient as a
share of the total initial carbon stored that could be released under total dieback
(75 GtC) in the forest and multiply by the number of years per period to obtain
the maximum share of carbon stored in the rainforest that is lost per period be-
cause of droughts for a one degree increase in local temperature for each model
j, ϵ̄j ∈ {0.0376, 0.0661, 0.0774, 0.1447}. Our dynamic model relies on regional tem-
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perature that depends linearly on the cumulative global emission stock (Leduc
et al., 2016) : we make the assumption that the link between carbon losses and
local temperatures holds for regional temperatures.

Internal calibration Information on how to evaluate the probability of a tip-
ping point for the Amazon is scarce. We use expert’s elicitations of a possible
Amazon tipping point depending on temperature corridors expressed in Krie-
gler et al. (2009). ϵ̃ is the coefficient and its probability distribution is a mixture of
the four ϵj. ϵ̃ follows a Beta law with parameter αs and βs over the support [0 : ϵ̄]

where ϵ̄ is the mean of the maximum ϵ̄j. We jointly calibrate Υ, g0, αs, βs so that
the probability of tipping in our dynamic system, dependent on the distribution
of ϵ̃, follows approximately the imprecise central probability of the expert pro-
bability assessments. We have that g0 = 0.49, Υ = 6 and ϵ̃ ∼ B (0.36,0.32) with
support [0 : ϵ̄]. For illustration, we simulate the cumulative carbon losses for all
SSP under our model 4. A partial or total dieback of the forest occurs by 2200
for a temperature increase with respect to pre-industrial era above 4°C, which is
well above temperature levels obtained under optimized policy decisions. Thus,
while our calibration is stylized, the forest dynamics is in line with the literature
and not artificially more catastrophic to inflate policy estimates.
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FIGURE 2.13 – Mean net cumulative carbon losses (in GtC) from the Amazon rainforest
along mean temperature increases with respect to preindustrial era from various exten-
ded concentration pathways (SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP5-3.4, SSP2-4.5, SSP4-6.0,
SSP3-7.0, SSP5-8.5), from 2000 to 2200, under our calibration.

4. In appendix, we plot phase diagrams of the stochastic dynamic system in Figures (2.20) and
(2.21) for the whole distribution of ϵ and different temperature pathways over time.
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3 Results

We assess numerically the optimal climate policy in a stochastic model with
an explicit modelling of the Amazon’s dynamics under risk and uncertainty. We
first measure how much the social cost of carbon at the global scale is affected by
the Amazon rainforest under expected utility. In other words, we study the gap
between SCC and SCCDS. We quantify how the various channels depicted above
shape optimal global climate policy. Second, we quantify the social cost of the dy-
namic subsystem SCDS as a share of the standard social cost of carbon SCC under
expected utility. Finally, for robustness, we price the risks and scientific uncertain-
ties in the Amazon dynamics and its interaction with global climate change and
the macroeconomy under smooth ambiguity : we quantify SCCSA and SCCDSSA

under various specifications. In annex, we present intertemporal stochastic paths
for our control variable and for two state variables of interest : global average
temperature and amazon rainforest’s state with respect to its initial state.

1 Optimal global climate policy - SCC and SCCDS

We first compute SCCDS under expected utility. We compare SCCDS to the
standard SCC that would be obtained under stochastic aggregate climate risk but
without an explicit endogenous modeling of the Amazon rainforest. On Figure
(2.14), we plot the increase (in %) from SCC to SCCDS for two specifications. The
left bar shows the increase the Amazon rainforest brings to the SCC at the global
scale when there is climate risk on the transient climate response to cumulative
emissions but no idiosyncratic risk over the rainforest dynamics. The right bar
shows the increase from SCC to SCCDS when we include both idiosyncratic sto-
chastic risk in the dynamics of the rainforest and aggregate climate risk. For each
measure, we compute the share that each of the various channels identified in the
complete analytical decomposition from equation (2.7) contributes to the increase
from SCC to SCCDS : the scaling of the standard channel through which carbon
emissions affect intertemporal welfare, the insurance ‘amazon beta’ component,
and the subsystem channel by which a marginal change in the amazon’s state
affects intertemporal welfare through the continuation value.

Figure (2.14) yields two main results. First, including the endogenous dyna-
mics of the Amazon rainforest in a dynamic stochastic climate-economy model
increases the SCC. Under aggregate climate risk over the transient climate res-
ponse to cumulative emissions, the SCCDS that includes the dynamics of the
Amazon rainforest is around 11% larger than the standard SCC. When additio-
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nal idiosyncratic risk on the dynamics of the rainforest is added, i.e. stochastic
risk on the impact of stochastic drougts from climate change on the rainforest,
the SCCDS is around 15% larger than the SCC. In their meta-analysis based on
Cai et al. (2016), Dietz et al. (2021a) highlight that the possible dieback of the
Amazon rainforest leads to a 0.1% increase in the expected SCC when conside-
ring its value as a carbon stock. Our analysis suggests these estimates may be
significantly understated for two reasons. First, we account for the rainforest’s
dynamics across all possible future states, rather than focusing on a stylized, ca-
tastrophic risk of partial dieback. Second, we incorporate the marginal impact of
the rainforest subsystem on the continuation value—a mechanism described as
the subsystem channel in equation (2.7). This channel is not explicitly captured
in standard climate-economy models, which often rely on ad hoc probabilities for
subsystem dieback without integrating an explicit state variable to represent the
subsystem’s dynamics.

Our second result from the right histogram on Figure (2.14) shows indeed
that the largest share of the increase from SCC to SCCDS stems from the sub-
system channel. Under climate risk, the subsystem channel represents around
74.3% of this increase, the scaling of the standard SCC by the additional feedback
from carbon releases of the Amazon rainforest represents 25.3%, and the insu-
rance channel represents 0.4%. Under both aggregate climate risk and idiosyn-
cratic amazon risk, the subsystem channel accounts for 68%, the standard scaling
represents 31.4%, and the insurance channel 0.6%. In other words, most of the
increase between SCC and SCCDS stems from the subsystem channel under both
specifications. The insurance channel, on the other hand, is rather weak, which
can be explained by two factors. First, the risk specification in our model : the
insurance relates to the interaction between the aggregate climate risk (transient
climate response to cumulative emissions) and the idiosyncratic risk (of changing
carbon concentration on forest dynamics). In reality, there are other sources of risk
between the two systems, such as the risk on the forest impact on the climate sys-
tem, i.e. stochasticity in possible carbon releases that might for instance arise due
to heterogeneity over the rainforest in the carbon storage. This risk could increase
the insurance component, i.e. the subsystem’s contribution to the aggregate risk.
Second, we study one subsystem in isolation, whereas there are several subsys-
tems that interact with each other and could increase the overall aggregate risk,
for example El Niño or AMOC and their feedbacks with the Amazon rainforest
via precipitation cycles.
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FIGURE 2.14 – Left Increase (in %) from SCC to SCCDS when the Amazon rainforest
is added to the dynamics system, under stochastic aggregate climate risk (left), under
both stochastic aggregate climate risk and idiosyncratic amazon risk (right). Right Share
(in %) of each channel in this increase (scaling, insurance & subsystem channels) under
aggregate climate risk (left) and both aggregate climate and idiosyncratic amazon risks
(right).

A back of the envelope calculation helps to understand the magnitude these
percentages might represent. Using a 2% discount rate, U.S. Environmental Pro-
tection Agency recently suggested to use a $190 per tCO2 social cost of carbon
(Agency, 2022). Global CO2 emissions in 2022 are estimated at 36.4Gt CO2 (Fried-
lingstein et al., 2023). This means that if the increase from SCC to SCCDS under
both stochastic risks represents 15% of the standard SCC, applying this increase
to the universe of CO2 emissions would raise around 1.0374 trillion dollars for
2022 only. Even the insurance channel, which represents only 0.6% of these 15%
increase, accounts for nearly 6 billions dollar yearly, i.e. five time the $1.2 billion
pledges from Lula da Silva for the Amazon Fund in January 2023. The wedge
between SCC and SCCDS could be leveraged at the global scale to finance coa-
sian mechanisms at the regional scale to prevent deforestation and forest degra-
dation. This regional management could indeed decrease the subsystem channel
and reduce risk over the future dynamics of the Amazon rainforest. This global
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redistribution would have a double dividend property : it would reduce both the
negative externality of carbon emissions at the global scale and the global and
regional risk over the dynamics of the rainforest.

Explicitly introducing the dynamics of a climate subsystem such as the Ama-
zon rainforest into stochastic climate-economy modelling has an impact on op-
timal global climate policy. To assess the value of a hectare of Amazonian forest
focusing only on its use value as a carbon stock, we first need to quantify the
amount of carbon stored in that hectare Σ. Once this quantity is known, it must
be multiplied by the standard social cost of carbon. Then, it should be multiplied
by the increase implied by the stochastic modeling of the dynamic of the sub-
system estimated above, i.e. Σ ∗ SCC ∗ 1.15 = Σ ∗ SCCDS. But that is not all.
Explicitly introducing the dynamics of a climate subsystem such as the Amazon
rainforest into stochastic climate-economy modelling also has an impact on the
optimal management of the subsystem’s resilience over time.

2 Optimal regional rainforest management - SCDS

We compute the social value of the dynamics system (SCDS) under expected
utility as a share of standard social cost of carbon SCC under aggregate climate
risk but without the amazon rainforest included in the dynamics, i.e. the standard
measure of the SCC in the literature. On Figure (2.15), we plot the share for two
specifications. On the left, we plot this share under standard aggregate climate
risk. On the right, we plot the share under both standard aggregate climate risk
and idiosyncratic amazon risk. For each specification, we report the share of the
two channels analytically depicted in equation (2.10) in the SCDS.

Figure (2.15) yields two key results. First, SCDS represents a significant share
of the SCC. Under aggregate climate risk, the SCDS represents 15.77% of the SCC.
Under both aggregate climate risk and idiosyncratic risk over the dynamics of the
rainforest, this share increases to 15.95%, a 1.1% increase with respect to the speci-
fication with aggregate climate risk only. Second, what matters most in the SCDS
is the subsystem channel, i.e. the impact of a marginal change in the subsystem’s
state on the continuation value of our program, which includes all future risks
over the dynamics of the forest and the welfare impacts of future possible carbon
releases. Under aggregate climate risk, the subsystem channel represents 58.2%
of the SCDS. Under both aggregate climate risk and idiosyncratic subsystem risk,
the subsystem channel represents 57.6% of the SCDS.
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FIGURE 2.15 – Left Share (in %) of SCDS in the SCC under expected utility with sto-
chastic climate risk under deterministic and stochastic specifications for the rainforest,
i.e. without (left) and with (right) idiosyncratic amazon risk. Right Share (in %) of each
channel in the SCDS (temperature and subsystem channels) under aggregate climate risk
(left) and both aggregate climate risk and idiosyncratic amazon risk (right).

This has large implications for regional forest management. Indeed, when
evaluating the value of a marginal hectare of rainforest in regional cost-benefit
analysis, for instance for infrastructure projects, SCDS should be accounted for.
In addition to the direct value of the carbon contained in this hectare of forest,
which should be valued at the SCCDS level as argued above, we need to take
into account the marginal value of the dynamic system on the continuation va-
lue, i.e. the sub-system channel of the SCDS. Indeed, choosing to deforest in one
place releases carbon, but also has an impact on the forest’s future carbon release
dynamics and the probability of its dieback. Explicitly introducing the dynamics
of a climate subsystem such as the Amazon rainforest into stochastic climate-
economy modelling has an impact on optimal regional subsystem management
via the valuation of an hectare of rainforest. To assess the value of a hectare of
Amazonian forest focusing only on its use value as a carbon stock, we first need
to quantify the amount of carbon stored in that hectare. Once this quantity Σ is
known, it must be multiplied by the standard social cost of carbon. Then, it should
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be multiplied by the increase implied by the stochastic modeling of the dynamic
of the subsystem estimated above, i.e. Σ ∗ SCC ∗ 1.15. Finally, it should be scaled
by the impact of a marginal change in the subsystem’s state on the future of the
rainforest, i.e. Σ ∗ SCC ∗ (1.15 + (0.1595 ∗ 0.576)) = Σ ∗ SCC ∗ 1.24, which means
a 24% increase in the valuation of this hectare of rainforest with respect to a stan-
dard valuation using the stochastic SCC under standard aggregate climate risk
without the explicit modelling of the rainforest.

Revolution in satellite data has allowed a quick development in dynamic
discrete choice methods that are useful tools to evaluate counterfactual policies
(Araujo et al., 2020). While this granularity in satellite data is very complemen-
tary to our approach and important from a descriptive point of view in order to
compute carbon stocks at the finest resolution or to monitor human disturbances
on the forest in real time, it does not allow for prospective modelling of the sys-
tem’s dynamics. Although some early warning signals of critical transitions such
as tipping points have been identified (Scheffer et al., 2009), they are not yet suf-
ficiently developed for real-time monitoring. Furthermore, it is not certain that it
is not too late once these signals are readable as the tipping point might already
have been triggered irreversibly : Biggs et al. (2009) suggest that research should
focus on defining critical indicator levels rather than detecting change in the in-
dicators. We are in line with this robust approach to possible ecological regime
shifts and SCDS might be operationalized to work in this direction within a glo-
bal welfarist framework.

3 Robust social choice

Finally, for robustness, we look at the extent to which our attitude towards
the large risks and uncertainties over the future dynamics of the rainforest can
change the amplitude of our results on the SCCDS and SCDS under expected
utility. We disentangle preference over time, risk and uncertainty (θ, γ and µ)
under perturbations to the rainforest. Various parameter values are used in the
literature either with positive or normative approaches (Ju and Miao, 2012; Cai
and Lontzek, 2019). Our approach is close to Berger et al. (2017) : we assume as a
benchmark 5 a setting with low-aversion θ = 1.5, γ = 2, µ = 2. The sensitivity is
done on a high-aversion scenario with γ = 10, µ = 10 while holding preference
for intertemporal substitution constant. Under robust control, switching attitudes

5. We cannot directly compare robust social choice policy programs to expected utility under
risk has they do not yield the same deterministic paths.
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from low to high aversions yields an increase of about 40% for the SCCDSSA and
60% for the SCDSSA.
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FIGURE 2.16 – Increase (in %) from low to high risk aversion parameter values under
smooth ambiguity when the amazon rainforest is accounted for (Top) SCDSSA (Down)
SCCDSSA.

In our robust criterion, we abstract from learning as in Millner et al. (2013) and
Berger et al. (2017). A dynamic learning model under uncertainty would require
updating the weights given to each model. Even if is not clear how and in which
direction scientific progress will allow to reduce uncertainty, our estimates un-
der uncertainty aversion should be considered as upper bounds of the possible
increases in the SCCDS brought by uncertainty. Meanwhile, a careful study of
learning under a tipping risk (Rudik, 2020) shows that learning can backfire and
reduce welfare by erroneously ruling out pending catastrophe. Our upper bound
ruling out learning could be more in line with a robust approach to decision-
making under uncertainty.

4 Conclusion

Modeling stochastic and debated interactions between climate change, the
macroeconomy and Earth subsystems with a reduced-form geophysical repren-
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tation of the dynamic subsystem is insightful for decision-makers, both at the
global scale for climate policy and at the regional scale for management of the
subsystem. Using value function decomposition, we show that the social cost of
carbon is increased from SCC to SCCDS by the endogenous subsystem through
three main channels : a scaling of the standard channel driving optimal policy by
the sign and magnitude of the feedback the subsystem brings to climate change,
an insurance channel that measures how subsystem idiosyncratic risk affects ag-
gregate climate risk on intertemporal welfare, and the impact a marginal carbon
emissions has on intertemporal welfare through its effect on the future dynamics
of the subsystem. Thus, the subsystem has an impact on optimal climate policy
that cannot be reduced to the expected value of the feedback it has on climate
change. At the regional scale, the explicit reduced-form geophysical representa-
tion of subsystem’s own dynamics which is nonlinear and partly beyond direct
control of the decision-maker allows to study the social cost of the dynamic sys-
tem SCDS, i.e. the cost of a marginal decrease in subsystem’s state because of its
reduced ability to self-perpetuate. Our methodological approach could be opera-
tionalized for public decision-making regarding other climate subsystems whose
fate is debated.

For illustration, we apply our general framework to the fierce debates over the
fate of the Amazon rainforest. We use a stochastic climate-economy model with
aggregate climate risk over transcient climate response to cumulative emissions
and add a stylized reduced-form geophysical dynamics of the rainforest with
idiosyncratic stochastic risk over the dynamics of the forest. We move away from
the modeling of a generic catastrophe to represent it as an emergent property of
the dynamic system. We calibrate the dynamics explicitely and take into account
both stochastic risk within climate models and scientific uncertainty over various
climate models in our decision criterion. Our approach yields three key results.
First, the social cost of carbon should include the impact that a marginal increase
in cumulative emissions at the global scale has on the dynamics of the rainfo-
rest. This includes both a scaling of current policy by the carbon releases from the
Amazon rainforest under changing climate and an insurance channel because
the carbon releases have not the same social value depending on the states of the
world where they occur. This also includes the marginal value of a carbon emis-
sion on intertemporal welfare through its impact on future subsystem’s dyna-
mics. Second, the social value of the Amazon rainforest as a carbon stock cannot
be reduced to the amount of carbon it contains : the SCDS matters too, as it repre-
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sents a significant share of the SCC under expected utility and standard aggregate
climate risk. Third, risk and scientific uncertainties are key components of these
subsystems : decision-making should account for them in the decision process ra-
ther than averaging over deterministic realizations. This means first and foremost
taking risk seriously in our modeling approch, with global solution methods and
multiple sources of risk interacting. Finally, it means offering the general public
decision-making tools that are flexible in terms of attitudes to scientific risk and
uncertainty, such as the smooth amiguity criterion. Both SCCDS and SCDS in-
crease sharply with these preference parameters under our robust social choice
criterion.

Our results yield three key policy insights at the global scale, from global to re-
gional scales and at the regional scale respectively. First, decision-makers should
use SCCDS instead of SCC, i.e. augment the SCC from the impact of a margi-
nal emissions on the Amazon rainforest, that further releases carbon. Emitters
around the world should pay around 15% per tCO2 for the welfare impact of their
emissions on the rainforest. Second, the wedge between SCCDS and SCC, i.e. bet-
ween the SCC without endogenous Amazon rainforest and the SCCDS with this
additional feedback, could be leveraged around the world and used to finance
payment for ecosystem services for the preservation of the rainforest in a double
dividend fashion. These mechanisms are the cornerstone of the UN-sponsored
REDD+ strategy. The wedge could address the challenge of financing these coa-
sian subsidies for not deforesting by clearly identifying who is responsible for
what in this subsystem’s dynamics whose fate is not entirely under the control of
the governments of the territory in which they are located. Indeed, when multi-
plied by the universe of carbon emissions, a 15% increase in the SCC at the global
scale represent an amount far larger than any other source of funding proposed
so far. Third, the social value given to an hectare of rainforest should include
not only the standard social cost of carbon SCC, but the sum of the amazon-
augmented social cost of carbon SCCDS and the subsystem channel of the social
cost of the dynamic system SCDS. This subsystem channel of the SCDS represents
around 9% of the standard SCC obtained under aggregate climate risk. Indeed, a
marginal decrease in the forest cover has a first-order welfare impact, as it releases
carbon, but also a second-order impact on the future dynamics of the subsystem
as a whole. Our theoretical work can therefore be operationalized in local cost-
benefit analysis of deforestation and be used in complement to the significant
progress in the quantification of carbon stored at the finest scale via satellite ob-
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servation. We show that, considering only its value as a carbon stock, the value of
a hectare of rainforest is 24% higher than the value currently used in cost-benefit
analysis. This SCDS is also interesting to differentiate between different subsys-
tems and understand how these differences bring differences in terms of optimal
policy at the global and the regional scales. The dynamics of the Amazon rainfo-
rest, which includes a feedback effect, is different from other tropical rainforests
(Staal et al., 2020) : feedback dynamics are weaker for Congo rainforest and sou-
theast Asian rainforests are not vulnerable to forest-rainfall feedbacks because of
their maritime climate zones. Incorporating an explicit geophysical dynamics of
the subsystem also matters for risk ranking among various climate subsystems.

Our work has limitations. Some limitations are standard in this literature, for
instance the simple representation of the macroeconomy. Two key limitations are
related to our specific modeling choices regarding the rainforest : on its dynamics
and on its valuation. First, there are more uncertainties at stake with the future
of the Amazon rainforest than the one we consider. Here, we have tried to grasp
some of this deep uncertainty to show how it influences our results. Second, the
main limitation and way forward would be to include other values to the subsys-
tems. For the Amazon rainforest, we focus on the use value of the rainforest as a
global carbon stock and abstract from other values : direct use values e.g. timber
products, indirect use value e.g. water and nutrient recycling, option and exis-
tence value, rights of the indigenous people, intrinsic value. Doing so, we could
study how subsystem’s idiosyncratic risk interacts with standard macroeconomic
risk at the continental scale, for instance when the rainforest has other externa-
lities such as health impacts that may affect economic growth at the continental
scale. Integrating all these values is left for future research.
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5 Appendix

1 Analytical decomposition - SCC

Expected utility A second-order Taylor expansion around z := (Et(At+1), Et(Tt+1))

writes :

Et

(
∂Ut+1

∂Tt+1

)
≈ ∂Ut+1

∂Tt+1

∣∣∣∣
z

(zeroth-order)

+
∂2Ut+1

∂2Tt+1

∣∣∣∣
z

Et (Tt+1 − Et(Tt+1)) (first-order)

+
∂2Ut+1

∂Tt+1∂At+1

∣∣∣∣
z

Et (At+1 − Et(At+1)) (first-order)

+
1
2

∂3Ut+1

∂2Tt+1∂At+1

∣∣∣∣
z

Et [(At+1 − Et(At+1)) (Tt+1 − Et(Tt+1))] (second-order)

+
1
2

∂3Ut+1

∂2Tt+1∂At+1

∣∣∣∣
z

Et [(Tt+1 − Et(Tt+1)) (At+1 − Et(At+1))] (second-order)

+
1
2

∂3Ut+1

∂Tt+1∂2At+1

∣∣∣∣
z

Et [(At+1 − Et(At+1)) (At+1 − Et(At+1))] (second-order)

+
1
2

∂2Ut+1

∂3Tt+1

∣∣∣∣
z

Et [(Tt+1 − Et(Tt+1)) (Tt+1 − Et(Tt+1))]) (second-order)

(2.14)
The first-order terms are all zero. Indeed, the expectation passes through be-

cause the first part of each first-order term is not random as well as the zeroth-
order term. The last second-order term is zero for the same reason. The second
part of the first and the second second-order term correspond to cov(Tt+1, At+1).
The second part of the third second-order term is var(At+1). That yields :

Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
= Et

(
∂Ut+1

∂Tt+1

)
Et

(
∂Tt+1

∂St+1

)
+ cov

(
∂Ut+1

∂Tt+1
;

∂Tt+1

∂St+1

)
(2.15)

Et

(
∂Ut+1
∂Tt+1

)
≈

 ∂Ut+1

∂Tt+1

∣∣∣∣
z︸ ︷︷ ︸

CE

+
∂3Ut+1

∂2Tt+1∂At+1

∣∣∣∣
z

cov(Tt+1, At+1) +
1
2

∂3Ut+1

∂Tt+1∂2At+1

∣∣∣∣
z

var(At+1)︸ ︷︷ ︸
PC


(2.16)

We want to decompose all future components of SCCDS. Starting from equa-
tion (2.1) that defines optimal policy under expected utility. We assume that we
are at the optimum and simplify notations for the expectations. There is no decay,
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so that we have :

Va
1,t = Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
= Et

(
u′

S[ct+1]
)
+ δVa

1,t+1Vb
1,t+1 + δVc

1,t+1 + δV2,t+1

(2.17)
Va

1,t = Et
(
u′

S[ct+1]
)
+ δVc

1,t+1 + δV2,t+1 + δVa
1,t+1Vb

1,t+1 (2.18)

Eventually advancing this equation and inserting it in itself yields :

Va
1,t = Et

(
u′

S[ct+1]
)
+ δVc

1,t+1 + δV2,t+1 + δVb
1,t+1

(
Et
(
u′

S[ct+2]
)
+ δVc

1,t+2 + δV2,t+2 + δVa
1,t+2Vb

1,t+2

)
(2.19)

Assuming that the shadow value of carbon concentration increase ∂U/∂S
converges to 0 over our large time horizon and along an optimal path, we re-
peatedly avance and insert this equation in itself. Then, inserting this in equation
(2.7), and repeating the operation, yields equation (2.9) that includes all future
components.

Smooth ambiguity One can extend the conclusion made here under expected
utility to our smooth ambiguity criterion. The SCCSA and SCCDSSA write :

SCCSA
t =

δ

u′
c(ct)

∂Vt+1

∂Tt+1

∂Tt+1

∂St+1
(2.20)

SCCDSSA
t = δ

u′
c(ct)

atEχt

btEπt

dt


Channels f rom main text︷ ︸︸ ︷[

∂Vt+1

∂Tt+1

∂Tt+1

∂St+1

(
1 +

∂St+1

∂At+1

∂At+1

∂St

)]
+

[
∂Vt+1

∂At+1

∂At+1

∂Tt

∂Tt

∂St

]



(2.21)
where

at(x) = (u ◦ h−1)′Eχt

[
(h ◦ v−1)Eπt(v ◦ u−1)(x)

]
(2.22)

bt(x) =
(
(h ◦ v−1)′Eπt(v ◦ u−1)(x)

)
(2.23)

dt(x) = (v ◦ u−1)′(x) (2.24)
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We use standard operations on expectations :



SCCDSSA
t =

δ

u′
c(ct)

Scaling︷ ︸︸ ︷
at [Eχt(btEπt(dt))]Eχt,πt

(
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(
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)
+

[
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∂St
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+

δ
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[
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(
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∂Tt+1

∂Tt+1

∂St+1

(
1 +

∂St+1
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∂St

)
+

[
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∂Tt
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])]
︸ ︷︷ ︸

Temporal resolution o f uncertainty (TRUt)

+
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(
dt;

∂Vt+1

∂Tt+1

∂Tt+1

∂St+1

(
1 +
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∂St

)
+

[
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∂Tt

∂Tt
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︸ ︷︷ ︸

Temporal resolution o f risk (TRRt)

(2.25)
In other words, the channel derived under expected utility is scaled with :

atEχt (btEπt(dt))) =

(
Eχt

[
Eπt((1 − θ)Vt+1)

1−γ
1−θ

] 1−µ
1−γ

) µ−θ
1−µ

︸ ︷︷ ︸
at

Eχt

(Eπt [(1 − θ)Vt+1]
1−γ
1−θ

) γ−µ
1−γ︸ ︷︷ ︸

bt

Eπt ([1 − θ]Vt+1)
θ−γ
1−θ︸ ︷︷ ︸

dt


(2.26)

The scaling does not affect the relative magnitude of the channels derived
in equation (2.9) but the concave transformation increases the SCCDS. Thus, the
conclusion made under expected utility on the relative magnitude of insurance in
optimal policy applies under the smooth ambiguity criterion. Note that the sca-
ling equals one when µ = η = γ, which yields expected utility. It is well known
that the dynamic models of ambiguity aversion yield timing nonindifference (Str-
zalecki, 2013), i.e. preference for the timing of resolution of risk and preference for
the timing of resolution of uncertainty. The second line of equation (2.25) is the
preference for temporal resolution of uncertainty and writes :

TRUt =

(
Eχt

[
Eπt((1 − θ)Vt+1)

1−γ
1−θ

] 1−µ
1−γ

) µ−θ
1−µ

cov
(
(Eπt [(1 − θ)Vt+1]

1−γ
1−θ )

γ−µ
1−γ Eπt ([1 − θ]Vt+1)

θ−γ
1−θ ; ∂Vt+1

∂Tt+1

∂Tt+1
∂St+1

(
1 + ∂St+1

∂At+1

∂At+1
∂St

)
+
[

∂Vt+1
∂At+1

∂At+1
∂Tt

∂Tt
∂St

])
(2.27)

This channel increases (decreases) the SCCSA and SCCDSSA when µ ≥ (≤)θ,
i.e. when the planner has preference for early (late) resolution of uncertainty,
which is the case for all values of µ and θ explored. The third line of equation
(2.25), already depicted in Lemoine and Rudik (2017) under Epstein-Zin-Weil pre-
ferences, is preference for temporal resolution of risk (see also Lemoine (2021))
and writes :

TRRt =

Eχt

[
Eπt ((1 − θ)Vt+1)

1−γ
1−θ

] 1−µ
1−γ


µ−θ
1−µ

· Eχt

[(
Eπt [(1 − θ)Vt+1]

1−γ
1−θ

) γ−µ
1−γ

· cov
(
([1 − θ]Vt+1)

θ−γ
1−θ , ∂Vt+1

∂Tt+1

∂Tt+1
∂St+1

(
1 + ∂St+1

∂At+1

∂At+1
∂St

)
+
[

∂Vt+1
∂At+1

∂At+1
∂Tt

∂Tt
∂St

])]

(2.28)
This channel increases (decreases) the SCCSA and SCCDSSA when γ ≥ (≤)θ,

i.e. when the planner has preference for early (late) resolution of risk, which is the
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case for all values of γ and θ explored here.

2 Analytical decomposition - SCDS

Smooth ambiguity Under this social choice criterion, the SCDSSA writes :

SCDSSA
t = δ

u′
c(ct)

atEχt

btEπt

dt


Channels f rom main text︷ ︸︸ ︷(

∂Vt+1

∂Tt+1

∂Tt+1

∂St+1

∂St+1

∂At+1

)
+ Et

(
∂Vt+1

∂At+1

)



(2.29)
The same interpretation as equation (2.25) above applies to the SCDSSA.

3 Resolution of the model

Simplicial Chebyshev Approximation. We use a simplicial complete Cheby-
shev approximation in the three-dimensional state space. Denote a d-dimensional
hyperrectangle state space [xmin, xmax] as {x = (x1, ..., xd) : xmin,j ≤ xj ≤ xmax,j, j =
1, ..., d} with d = 3 and where xmin,j and xmax,j are lower and upper bounds of
state variable xj. The state variables are A, T and K (from which Y can be de-
duced). The time-dependent approximation space is defined around a determi-
nistic growth path derived from Ramsey formula. This adaptive grid allows to
use fewer collocation points than on a standard hyperrectangle grid. We do not
use a complete Chebyshev approximation as it assumes symmetric approxima-
tion in each dimension. In our multidimensional problem, the value functions
have higher curvature in the forest and temperature dimensions because of the
feedback effect, while savings rate is fixed and capital dynamics smooth : we use
degree-3, degree-4, degree-6 interpolation for capital, temperature and Amazon
respectively. We do not have a proper kink so we do not use adaptive sparse grids
(Brumm and Scheidegger, 2017) and stick to a tensor product grid that can handle
our curvature. The approximation writes :

V̂(x, b) = ∑
α≥0,∑d

j=1 αj/nj≤1

bαΦα(x) (2.30)

where nj is the maximal degree in dimension j and Φ the product of one-dimensional
Chebyshev basis functions ταi(Zi(xi)) = cos(αicos−1(Zi(xi)) where we have that
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Zj(xj) =
2xj−xmax,j−xmin,j

xmax,j−xmin,j
for j = 1, ..., d. Φ writes :

Φα(x) =
d

∏
i=1

ταi(Zi(xi)) (2.31)

Chebyshev nodes To get a not-overfitted approximation, the number of nodes,
m, should not be less than the number of unknown coefficients, bα. Choosing
tensor-grids may lead to another level of curse of dimensionality. We chose Che-
byshev nodes and let mj = nj + 1, so that the number of grids in dimension j
is equal to one plus the maximal degree of Chebyshev approximation in dimen-
sion j. For our d-dimensional problem in the state space [xmin, xmax], there are
m1 ∗ m2 ∗ ... ∗ md approximation nodes with the tensor grid and the values of
Chebyshev nodes in dimension j are :

xi,j = (zi,j + 1)(xmax,j − xmin,j)/2 + xmin,j (2.32)

with zi,j = −cos((2i − 1)π/(2mj)) for i = 1, ..., mj. Furthermore, we break the
‘curse-of-dimensionality’ on tensor grids using CPU parallel computing as the
interpolation can be done independently between the different approximation
nodes.

Terminal value The calculation is done on a finite horizon (T = 500 years) as
an approximation of the infinite program. The terminal value is defined as the
sum of all the period utilities from time T to infinity. The assumption made is that
the consumption will grow for a constant capital per efficient capita and total
abatement, with a deterministic path for the capital derived from Ramsey. The
terminal constraint uses a modified discount factor (Barr and Manne, 1967). The
choice of the terminal value does not affect the program : a 10% increase in the
terminal value does not significantly affect the optimal path. It writes :

TVF =

(
1 − tstep

1 − δ(1 + g)θ

) 1
θ

u(c) (2.33)

with c the consumption for constant capital per efficient capita and total abate-
ment, δ the discount rate, g the growth rate of labour productivity from the last
period, tstep the time step, θ the marginal utility parameter. Under uncertainty
aversion, we assume that all uncertainty is solved at the end of our time horizon.

Bellman functions Starting from the social choice criterion from Berger et al.
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(2017), we define Bellman functions to solve this dynamic program, Vt = u(Ut) :

Vt(xt, ϵt) = max
yt

(1 − δ)u(xt, yt) + δ f [Vt+1(xt+1, ϵ̃t+1)] (2.34)

where f accounts for the decision maker’s attitude towards intertemporal substi-
tution, uncertainty, and risk : f (Vt+1) = u ◦ h−1 [Eχt

(
h ◦ v−1Eπz,t [v ◦ u−1(Vt+1)]

)]
,

i.e. :

f (Vt+1) =

Eχt

(
Eπz,t [Vt+1]

1−γ
1−η

) 1−µ
1−γ


1−η
1−µ

(2.35)

4 Procedure for the calibration

We use deforestation rates from Aguiar et al. (2016) : (km2 / year) decreasing
to 3900 (2020) then to 1000 (2025) and stabilizing until 2050 (scenario A), decrea-
sing to 3900 (2020) and stabilizing until 2050 (scenario B), increasing to 15000
(2020) and stabilizing until 2050 (scenario C). The calibration of our dynamics
is a two-step procedure. First, we calibrate externally the maximum impact of
local temperature changes on tree carbon losses through droughts ϵ̄. We use pro-
jections from climate models at a fine spatial resolution to derive a relationship
between changes in local temperatures and changes in a drought index over the
Amazon basin, the maximum cumulative water deficit (MCWD) anomaly with
respect to an historical baseline. We use past observations to derive a link bet-
ween MCWD and carbon losses. Then, we calibrate the whole distribution of ϵ̃

within the support [0 ; ϵ̄] internally so that the dynamics of our system matches
the expert assessments from Kriegler et al. (2009) on a possible tipping point. A
taste of the uncertainty between models appear on the graph below :

5 Calibration

1 External calibration

Step 1 - Prepare and match datasets We use an Amazon shapefile (Silva-
Souza and Souza, 2020) at a 0.5° x 0.5° spatial resolution and calculate for each
cell the MCWD anomaly observed along three representative concentration pa-
thways (RCPs 2.6, 6.0, 8.5) in comparison with the historical baseline (1984-2004
as in Phillips et al. (2009)). We use projections from climate models taken from
the Inter-Sectoral Impact Model Intercomparison (ISIMIP) for local precipitations
and temperatures. For each RCP, we use fixed year-2005 land use, nitrogen depo-
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FIGURE 2.17 – Spatial cumulative distribution at 0.5° resolution of maximum cumulative
water deficit anomaly with respect to historical baseline for RCP 8.5 over the Amazon
rainforest. Left shows that over all climate models, the average MCWD anomaly shifts to
more extreme and frequent droughts from 2010-2050 to 2050-2090. Right shows how the
distribution of average MCWD anomaly over 2050-2090 depends on the climate model
used

sition and fertilizer input to avoid double counting of human direct influences on
the forest, as we already take into account deforestation and degradation. We use
the estimates taken from one type of model : the hydrological model MATSIRO.
We use all climate impact models available as the main climate uncertainty on fu-
ture droughts stems from the differences between these models : GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR, MIROC5. Two other types of models could be
used : dynamic global vegetation models and land surface models. But we do
not have RCP trajectories for the dynamic global vegetation model and we do
not have historical baseline for CLM45 : we would have to use fixed-2005 socioe-
conomic scenarios for the historical baseline. Furthermore, land-surface models
are not appropriate for the study of the impact of droughts on the rainforest and
the vegetation models assume fixed tree mortality while we want to use historical
data (Phillips et al., 2009) to describe the link between droughts and carbon losses.

We transform precipitation data from kg/m−2/s−1 to mm2/month. With P the
precipitation level in mm2/month, the cumulative water deficit (CWD) writes 6

(Papastefanou et al., 2020),with m the months, k the grid cells (m = 1,..., 12) and i

6. A fixed value for evapotranspiration (ET) of 100 mm per month is used. When monthly
rainfall is below 100 mm, the forest is under water deficit.

116



the climate model used :

CWDk,m,i = CWDk,m−1,i,RCP + Pk,m,i − 100 if Pk,m,i,RCP < 100 (2.36)

CWDk,m,i = 0 if Pk,m,i > 100 and CWDk,0,i = 0 (2.37)

We calculate MCWD for each year (y) from october n to september n+1 for
each cell k. We have : MCWDk,y,RCP,i = min(CWDk,m,RCP,i), m = 1, ..., 12. We ob-
tain the MCWD anomaly, in comparison with the mean values taken from the ba-
seline calculated at the cell level : MCWDanomaly

k,y,RCP,i = MCWDk,y,RCP,i − MCWDbaseline
k,RCP,i .

We use local surface temperature data from all climate impact models along the
three RCP and match it to the data on MCWD anomaly at the pixel level. We
calculate the mean average local surface temperature from october n to septem-
ber n+1. We translate the MCWD anomaly to carbon losses. We take observations
from previous literature (Phillips et al., 2009) to derive a simple link c (c ≈ 0.05
tC/ha/y/mm2 MCWD anomaly) between yearly MCWD anomaly (in mm2) and
the carbon losses observed (in tC / ha / year). The carbon losses observed de-
pend on the size of the pixel, but the difference in size is minor (< 3%) and we
focus on the difference in carbon stored. We take data from EarthData (NASA)
for the carbon storage spatial heterogeneity (Baccini et al., 2012). We scale each Ci

by the ratio of the carbon stock of this pixel i to the mean of the carbon stock in
every pixel to take into account heterogeneity in the distribution of carbon stored.

Step 2 - Econometrics model selection and tests We have a balanced panel
dataset with yearly projections of carbon losses and local temperatures from oc-
tober 2006 to september 2099 (T=93) for each location (N depends on the climate
impact model used but overall, N >> T). The basic OLS regression model does
not consider heterogeneity across locations or across years. We use fixed effects
models as the Durbin-Wu-Hausman test is rejected for each model : while the
fixed effect specification has a cost in terms of degrees of freedom, using random
effects modelling would come with the too heavy assumption that the unobser-
ved heterogeneity of the model is not correlated with the regressors. We check
if time fixed effects are needed with Lagrange multiplier tests and F test : we
reject the null hypothesis and add T-1 (to avoid perfect multicollinearity) time
fixed effects to our fixed effects panel specification. Our specification limits the
probability of coefficients being driven by omitted variables. We do not differen-
tiate the data as stationarity is not a problem in our panel dataset with time fixed
effects and N >> T. We are not preoccupated by simultaneity as local tempe-
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ratures are mainly driven by global cumulative emissions stock as long as the
vegetation cover is not fully depleted. We test homoskedasticity and serial cor-
relation with Breusch-Pagan and Breusch-Godfrey lagrange multipliers tests. We
reject the null hypothesis and find evidence of heteroskedasticity and serial corre-
lation : we might use robust covariance matrix estimators à la White for our stan-
dard errors but first need to test for cross-sectional dependence with Pesaran’s
and Breusch-Pagan’s tests. As expected (spatial data), we reject the null hypothe-
sis that residuals are not correlated so that there is cross-sectional dependence in
each model, which might bias our coefficients. Furthermore, we use Driscoll and
Kraay (1998) standard errors to account for this dependence structure. We also
add regional fixed effects to account for heterogeneity in the vegetation. We use
Silva-Souza and Souza (2020) woody plant regionalization into 13 subregions ba-
sed on k-means partitioning. Let C be the carbon losses (in tC / ha / y), X the local
temperature at the pixel level, u the error term, i the notation for our geo-coded
entity, t the notation for time, r the Silva-Souza and Souza (2020) subregions. β

is our coefficient of interest, α, δ and ζ vectors of location, time and region fixed
effects respectively. We estimate the following :

Cj
i,r,t = βjX j

i,r,t + α
j
i + δ

j
t + ζ

j
r + uj

i,r,t (2.38)

We have our coefficients of interest β̂j for each model j that gives how a 1°C
increase in local temperature translates into a change in carbon stored (in tC / ha
/ year).

Specification Climate model Coefficient Standard Errors [robust] t-value [robust]
FE HADGEM -1.1271 0.0031 [0.0226] -365.806 [-49.8816]

GFDL -2.7006 0.0056 [0.025] -484.8025 [-108.1676]
IPSL -0.4885 0.0043 [0.0133] -114.0374 [-36.7257]
MIROC -1.1996 0.0036 [0.0225] -332.0498 [-53.2061]

FE & year FE HADGEM -1.4039 0.0048 [0.0288] -293.4842 [-48.7659]
GFDL -3.0708 0.0067 [0.0262] -454.942 [-117.3824]
IPSL -0.7977 0.007 [0.0204] -113.5831 [-39.1795]
MIROC -1.6436 0.0049 [0.0311] -335.25 [-52.9338]

FE & regional FE HADGEM -1.1271 0.0031 [0.0563] -365.806 [-20.0358]
GFDL -2.7006 0.0056 [0.1559] -484.8025 [-17.3256]
IPSL -0.4885 0.0043 [0.1107] -114.0374 [-4.4126]
MIROC -1.1996 0.0036 [0.0892] -332.0498 [-13.45]

FE, year & regional FE HADGEM -1.4039 0.0048 [0.0048] -293.4842 [-293.4842]
GFDL -3.0708 0.0067 [0.0067] -454.942 [-454.942]
IPSL -0.7977 0.007 [0.007] -113.5831 [-113.5831]
MIROC -1.6436 0.0049 [0.0049] -335.25 [-335.25]

We multiply this coefficient by the size (≈ 705 million ha) of the forest (Souza-
Rodrigues, 2019) and by the number of years per period (5 years) and express it
as a share of the carbon stored in the forest at initial time that can be lost (75GtC
(Armstrong McKay et al., 2022)). This coefficient gives the upper bound of the
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mean additional share of carbon stored in the rainforest that is released per period
because of droughts for a one degree increase in local temperature in climate mo-
del j. Our coefficients ϵj are taken from observations of the 2005 drought (Phillips
et al., 2009), one of the most severe droughts observed over the Amazon so far.
Thus, we assume that ϵ̄j are higher estimates of the possible impact of droughts.
We assume that on a given period, the impact of droughts on the carbon storage
follows a beta distribution of unknown parameters αs and βs with support [0 : ϵ̄j].

2 Internal calibration

Data processing We use expert assessments from Kriegler et al. (2009) to ca-
librate our global dynamics : we calibrate the growth rate g0, the feedback effect
Υ and the parameters αs and βs of the beta distribution of stochastic droughts ϵ̃

to recover the same probabilities of tipping along three RCP. We want to make
sure that our dynamic system is approximately in line with these expert elicita-
tions. In the low temperature corridor, the central weighted estimate from core
experts in Kriegler et al. (2009) is a probability of 24% of tipping. In the medium
temperature corridor, their central estimate is a probability of 49% of tipping. In
the high temperature corridor, the central estimate is a probability of 67%. The
temperature corridors used by Kriegler et al. (2009) are wide, and we assume fair
approximations for their ‘low’, ‘medium’ and ‘high’ temperature corridors are
the Shared Socioeconomic Pathways SSP4-3.4, SSP4-6.0, SSP5-8.5. These SSP are
available in IPCC AR6 (Smith et al., 2021) : more specifically, we use extended SSP
as we need data until 2200. The data is available as effective radiative forcing (in
W.m˘2) time series. We use a simple two-layers box model described in IPCC AR6
(Smith et al., 2021) to translate this data to global average surface temperature :

C
d
dt

∆T = ∆F(t) + α∆T − ϵγ(∆T − ∆Td) (2.39)

Cd
d
dt

∆Td = γ(∆T − ∆Td) (2.40)

where ∆T (°C) is the temperature change of the surface components of the climate
system, ∆Td (°C) is the temperature change in the deep ocean layer, C and Cd are
the effective heat capacities for the surface and deep layers, ϵ is the efficacy of the
deep ocean heat uptake and γ is the heat transfer coefficient between the surface
and deep layer. We use the central estimates from IPCC for the key parameters
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and abstract from uncertainty on these parameters 7. We use Leduc et al. (2016)
regional transient climate response to cumulative emissions (2.0°C per TtC over
the Amazon basin) and the IPCC (Masson-Delmotte et al., 2021) best estimate
for global transient climate response to cumulative emissions (1.65°C per TtC) to
have a simple mapping from global to regional temperature.

Jointly calibrate the parameters and distribution of ϵ Reasonable ranges
for Υ, the temperature difference between bare soil and forest, range from 3.98
(forest-to-pasture) to 7.06 (forest-to-cropland) in Silvério et al. (2015). Ritchie et al.
(2021) use 5. The Beta distribution is chosen so that the expected value of the mean
yearly drought impact over a period is between one half and one fifth of the value
of the impact calibrated from the 2005 extreme drought in Phillips et al. (2009).
Furthermore, we assume αs and βs below 1 to model situations where observa-
tions are either close to the upper bound or the lower bound and intermediate
values are less likely. This seems reasonable as these extreme droughts seem to
occur every five years as observed in the past twenty years, either associated with
positive sea surface temperature anomalies in the tropical Atlantic (2005, 2010) or
with strong El Niño events (1997/98, 2015/16). Ritchie et al. (2021) use a pertur-
bation rate of 0.2 and a growth rate of 2 so we keep the ratio constant with our
perturbation rate ϵ to seek values for which the dynamics fits with experts views.
Using the inverse of the cumulative distribution function of our beta distribution
of unknown shape αs and βs, we give the values of ϵlow,ϵmedium and ϵhigh that cor-
responds to the expert probabilities. Then, along the three SSP4-3.4, 4-6.0, 5-8.5,
we calibrate g0, Υ, αs, and βs, so that in 2200, the dynamic system experiences a
dieback for ϵlow + δ (same for ϵmedium and ϵhigh) but no dieback for ϵlow − δ (same
for ϵmedium and ϵhigh), with δ ± 1%. There is a large, potentially infinite number
of solutions. Arbitrarily, coefficients are taken to one decimal only and find the
ensemble of combinations for which the criteria for convergence are respected.
We pick one of the combinations. Our central estimate is : g0 = 0.49, αs = 0.36,
βs = 0.32, Υ = 6. The distribution for ϵ is given in Figure 2.18 :

7. C = 8.1 ± 1 W.yr.m−2 °C−1, Cd = 110± 63 W.m−2 °C−1, γ = 0.62 ± 0.13 W.m−2 °C−1, ϵ = 1.34
± 0.41, α = -1.33 ± 0.5. We calculate the cumulated sum starting from 1750.
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FIGURE 2.18 – Cumulative distribution function of ϵ̃ with red mean E(ϵ) ≈ 0.0431 and
blue median P(ϵ > 0.0462) = 50%.

6 Consistency of the coefficients

We run a simulation (1000 paths) of our dynamics for the carbon stored in
the rainforest, including all the perturbations, along various extended concentra-
tion pathways in Figure (2.19). We give the mean total carbon net losses (in GtC)
for different temperature increases (in °C), with (left) and without (middle) the
tipping risk. Finally, we give the same path but under the assumption made in
our model that, as there is scientific uncertainty, there is a 50% chance of tipping
risk (right). After 2200, we assume that the carbon stored in the forest remains
constant : the carbon losses are permanent. In our model, there is no SSP (even
the most extreme one) for which there is a dieback of the rainforest before 2100
under deforestation and degradation scenarii.
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FIGURE 2.19 – Time horizon Mean cumulative carbon losses (in GtC) from the Amazon
rainforest along various extended concentration pathways (in °C) from 2000 to 2200 un-
der no tipping risk (A), a tipping risk (B), and in our model (C).

We give the phase diagrams of our dynamic system under no tipping risk
and under a tipping risk. The diagrams give for various values of the stochastic
impact of temperatures on the dynamics of the rainforest ϵ, over time, and for dif-
ferent scenarii, the change in forest cover with respect to initial period. A dieback
of the forest occurs by 2200 only for carbon-intensive scenario that are usually
not optimal (so, these scenarii will not occur in our optimized framework), for
a tipping risk, and for large values of the impact of global temperatures on the
dynamics of the rainforest.

--- title: plotly header-include: | head: |2+ background-color: white ---

FIGURE 2.20 – Phase diagram. Dynamics of the forest under no tipping risk for various
ϵ̃ and for a low, medium and a high temperature corridor. E(ϵ) ≈ 0.0431 and P(ϵ >
0.0462) = 50%.

122



--- title: plotly header-include: | head: |2+ background-color: white ---

FIGURE 2.21 – Phase diagram. Dynamics of the forest under a tipping risk, i.e. Υ ̸= 0,
for various ϵ̃ and for a low, medium and a high temperature corridor. E(ϵ) ≈ 0.0431 and
P(ϵ > 0.0462) = 50%.

7 Stochastic paths for some variables of interest

We plot the distribution of stochastic paths until 2100 for temperature in-
creases, forest stock, abatement rate, from our optimized programs under expec-
ted utility. The bold line gives the mean of 100 stochastic paths (gray area are for
5% and 95% paths). Specification 1 is the benchmark, with aggregate climate risk
over transient response to cumulative emissions, but no explicit representation
of the amazon rainforest. Specification 2 is the first counterfactual, where there
is aggregate climate risk and an explicit representation of the amazon rainforest.
Specification 3 is the second counterfactual, where there is both aggregate climate
risk and idiosyncratic risk over the dynamics of the rainforest.
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FIGURE 2.22 – Stochastic optimized paths under aggregate climate risk, without endoge-
nous amazon dynamics.

123



0.00

0.25

0.50

0.75

1.00

2020 2040 2060 2080 2100
Year

A
ba

te
m

en
t (

%
)

Abatement Over Time

1.0

1.5

2.0

2.5

2020 2040 2060 2080 2100
Year

T
em

pe
ra

tu
re

 in
cr

ea
se

 w
.r

.t.
 p

re
in

du
st

ria
l (

°C
)

Temperature Over Time

0.80

0.85

0.90

0.95

1.00

2020 2040 2060 2080 2100
Year

S
ha

re
 o

f A
m

az
on

 r
ai

nf
or

es
t e

xt
en

t w
.r

.t.
 to

 in
iti

al

Amazon extent Over Time

FIGURE 2.23 – Stochastic optimized paths under aggregate climate risk, with endogenous
amazon dynamics, without amazon idiosyncratic risk.
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FIGURE 2.24 – Stochastic optimized paths under aggregate climate risk, with endogenous
amazon dynamics, with amazon idiosyncratic risk.
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Chapitre 3

Climate shift uncertainty and economic da-
mages

This working paper a is a joint work with Manuel Linsenmeier (Princeton
University, HMEI) and Gernot Wagner (Columbia University, CBS).

Focusing on global annual averages of climatic variables, as in the stan-
dard damage function approach, can bias aggregate and distributional
estimates of the economic impacts of climate change. Here we empirically
estimate global and regional dose-response functions of GDP growth
rates to daily mean temperature levels and combine them with regio-
nal climate projections of daily mean temperatures. We disentangle for
various shared socio-economic pathways (SSPs) how much of the mis-
sing impacts are due to heterogeneous warming versus heterogeneous
damage patterns over space and time. Global damages in 2050 are around
25% higher when accounting for the shift in the shape of the entire intra-
annual distribution of daily mean temperatures at the regional scale.

Keywords : damage functions, climate risk, uncertainty, climate shift,
temporal and spatial disaggregation, temperature downscaling.
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1 Introduction

Knowing how future climate damages might be distributed in time and space
is a key research frontier and policy issue for climate scientists, economists, and
decision-makers. Projections of endogenous climate damages in macroeconomic
models (Fernández-Villaverde et al., 2024) typically rely on reduced-form rela-
tionships between climate change and the macroeconomy, which are generally
based on annual climatic statistics—e.g. mean annual temperatures. Furthermore,
models are generally aggregated for that climate variable to be global—mean an-
nual global temperatures. In these integrated climate-economy models, carbon
emissions are a by-product of regional economic activities. A reduced-form cli-
mate module then allows to capture how these carbon emissions turn into global
annual mean temperature anomaly, from which regional annual mean tempe-
rature anomaly can be down-scaled through a simple linear and time-invariant
factor ; a process also called pattern scaling. The regional physical impacts are
then interacted with dose-response functions estimated on global data to mea-
sure the economic impacts of endogenous climate change. These macroeconomic
models are either global (Nordhaus, 1994), regional (Nordhaus and Yang, 1996)
or gridded, as in the burgeoning spatial integrated assessment modelling (IAM)
literature (Desmet and Rossi-Hansberg, 2024), e.g. Krusell and Smith Jr (2022) and
Cruz and Rossi-Hansberg (2024).

The underlying assumption behind these approaches is that the shapes of the
spatio-temporal distributions of mean temperatures do not matter. First, with re-
gard to the temporal dimension, the intra-annual shape of the distribution of
daily mean temperature is assumed to remain constant : temperature increases
due to climate change are shape-preserving increases in annual mean. Second,
regarding the spatial dimension, an average increase in temperature at global
level is assumed to affect the regional annual distribution by a linear and time-
invariant down-scaling factor such as the regional transient response to cumula-
tive emissions (Leduc et al., 2016). The reality of future regional weather changes,
however, seems more complex, for two main reasons. First, natural climate varia-
bility over time and space, both from external (e.g. solar cycles) and internal fac-
tors (e.g. El Niño-La Niña), might distort future temperature distributions beyond
the annual mean (Schwarzwald and Lenssen, 2022). Second and more fundamen-
tally, the process determining the shape of the weather distribution within a given
year for a given regional mean temperature might not be stationary, so that time-
invariant relations between annual averages and the intra-annual distribution of
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weather only imperfectly reflect regional-specific shifts in warming patterns. In
North-West Europe, for example, hottest summer days are warming twice as fast
as mean summer days (García-León et al., 2021; Patterson, 2023). That opens the
question around the ‘right’ level of spatial and temporal aggregation for projec-
ting future impacts. Aggregation has advantages, as it comes with statistical ro-
bustness, clear identification of causal relationships, and tractability in models
where anomaly in climate results from endogenous anthropogenic emissions ; it
also has shortcomings, such as the risk of averaging contradictory effects between
regions both in terms of damage and warming patterns.

In parallel to integrated assessment models with endogenous climate change
stemming from anthropogenic carbon emissions, some integrated assessment mo-
dels use exogenous global circulation model projections to infer the costs of cli-
mate change with adapting agents, e.g. spatial IAM such as Bilal and Rossi-
Hansberg (2023) and Rudik et al. (2022). In these models, which incorporate cre-
dible climate projections, climate change remains exogenous to economic activi-
ties. As a result, the estimates from the two bodies of literature, i.e. endogenous
and exogenous, evolve in parallel, yet the effects of this divergence on the ag-
gregate and distributional estimates of climate impacts remain unclear. Our pa-
per aims to shed light on this gap. Indeed, our paper tests the impact of two
separate (but related) limitations of many existing studies : the effect of separa-
tely fitting models by region on the initial dose response function, and the ef-
fect of including regional climate change and projections that sample changes
in the entire distribution on future projections using those dose response func-
tions. To disentangle these effects, we here follow a two-step approach. First, we
switch from annual average temperatures to the complete daily temperature dis-
tribution over a year and show how this affects the heterogeneous distribution
of warming patterns between regions, compared to a setting where we assume
a shape-preserving shift in mean annual temperatures under a synthetic chan-
ging climate. Second, we interact these regional-specific shifts in warming pat-
terns with regional-specific damage patterns, in comparison with a setting where
we assume homogeneous damage patterns at the global scale. Indeed, when di-
saggregating to regional levels, economists often use global damage functions,
instead of using estimates from regional-specific damage patterns. Meanwhile, it
seems intuitive that a hot day in a relatively warm country has a different impact
than the same day in a cold country ; Heutel et al. (2021) show this to be the case
for U.S. counties. Alongside efforts to measure the non-linear effects of tempera-
ture on economic activity, for example with temperature bins (Dell et al., 2014;
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Hsiang, 2016; Auffhammer, 2018), we measure regional dose response functions,
to capture some of the regional idiosyncrasies in the climate-society relation. We
focus on a physical idiosyncrasy and estimate regional dose-response functions
for each aggregate Köppen-Geiger climatic zone : arid, continental, polar, tempe-
rate, tropical.

These debates over the spatio-temporal aggregation of climate projections might
have important consequences, not only for establishing our best approximation
of future damage and reconciling different approaches, but also in quantifying
the uncertainty surrounding this best guess. Uncertainties in climate-economic
modelling abound (Rising et al., 2022; Kotz et al., 2023). The quantifiable variance
of future projections of climate impacts is affected by scenario uncertainty (dif-
ferences in Shared Socioeconomic Pathways - SSPs), model uncertainty (diffe-
rences in Earth System Models - ESM - responses to the SSPs), internal variability
(spatiotemporally, due to the chaotic nature of the climate and due to regional
differences that may be hidden by regional aggregation), any choices made in
post-processing or bias-correcting ESM output (including how finely to apply
projected changes in climate distributions from ESMs), in addition to regression
uncertainty from the dose-response functions, and differences between observa-
tional data products used to fit the dose-response function and act as a baseline to
which future ESM output is compared. Historically, many studies use global an-
nual average climate variables to estimate and project climate damages, thereby
ignoring an important source of internal variability stemming from regional dif-
ferences in climate states and from only extracting mean changes from ESM pro-
jections. Among all uncertainties, we focus on two uncertainties and their inter-
action : the sensitivity of economic impact projections to an improved sampling
of internal variability (through capturing regional differences in impacts) and an
improved treatment of ESM output (by capturing changes in the full shape of the
temperature distribution instead of annual averages). We take part in uncovering
some of the model uncertainties between ESM using the whole shape of war-
ming patterns that is usually reduced by the aggregation procedure on a global
and annual scale. We provide a framework based on temperature distributions
that can be applied to other climate data, for instance precipitation or maximum
temperatures, and a quantification to show how much the regional-specific shift
in the shape of warming patterns interacting with regional-specific damage pat-
terns matter empirically, both at the aggregate level and in the distribution of
impacts, with the year 2050 as a case study.

Our work yields two main conclusions. First, switching from annual global
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mean temperature to the regional annual distribution of daily mean tempera-
tures affects the magnitude of the estimates of economic damages : in 2050, using
regional damage patterns interacted with the shift in the whole shape of the dis-
tribution of daily temperatures yields climate damage at the global scale that are
around 25% larger than the damage obtained under the assumption of homo-
geneous damage patterns over the world and a shape-preserving shift in an-
nual mean daily temperature. Standard aggregation comes with underestima-
tion of future climate damages. This result holds for a variety of more or less
carbo-intensive SSPs : SSP1-2.6, SSP3-7.0 and SSP5-8.5. Second, we show that the
distributional effect is not clear-cut. Uncertainty in the change in the shape of
the temperature distributions affects all regions of the world in a heterogeneous
way, but is particularly strong in continental areas. This result is important for
standard climate change adaptation modelled in spatial integrated assessment
models. Indeed, they project that adaptation through migration to some regions
(Cruz and Rossi-Hansberg, 2024) or greater agricultural output in these regions
through structural change (Conte et al., 2021) might reduce the aggregate wel-
fare impacts of climate change and have large distributional implications, with
many benefits shifting to the northern hemisphere. The benefits of adaptation to
mitigate the aggregate welfare costs of climate change could therefore be ove-
restimated if the regions to which people migrate and where more agricultural
output is produced are continental climatic zones, which is the case.

2 Climate and economic data

1 Warming patterns

We compare the distribution of daily mean temperatures in actual climate pro-
jections to a counter-factual synthetic projection where the shape of the distri-
bution remains the same while the mean annual temperature increases, a stan-
dard assumption in the literature. We build different climate landscapes, where
‘climate’ is defined as the underlying distribution, from which a specific regio-
nal temperature distribution over a year is drawn (Waidelich et al., 2023). We
use CMIP6 bias-corrected and downscaled data at a resolution of 60 arc-minutes
from five earth system models (ESM) stored in ISIMIP Protocol 3B (Frieler et al.,
2023) : GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM2-0, UKESM1-
0-LL. ISIMIP subset of climate models and de-biasing techniques were designed
to assess impacts of climate change and to span the larger ensemble of CMIP mo-
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dels (Warszawski et al., 2014). Thus, our illustrative study underestimates inter-
model uncertainty among the over 100 CMIP6 models. Data is available for three
shared socioeconomic pathways (SSP 1-2.6, 3-7.0, 5-8.5). We construct four dif-
ferent climate landscapes for each SSP. The first is the climate landscape without
climate change, the ‘control’ climate : it is the mean distribution of ‘picontrol’
time series experiments run over 2006 to 2100 with pre-industrial CO2 concentra-
tion. The second is the landscape from actual climate projections which consists
of bias-corrected, downscaled output from five ESMs forced with future emis-
sions from three different SSPs, the ‘projection’ climate : we use the average of
the 10-year distribution around a date to approximately capture the underlying
distribution from which the specific weather realization from a specific year is
drawn, i.e. 2045-2055 in our example 1. This landscape samples scenario uncer-
tainty, inter-model uncertainty, and regionally specific changes in the shape of
daily mean temperature distributions. The third climate landscape is a ‘synthetic-
model’ landscape, where we add for each temperature observed in the ‘control’
climate of each of the five ESM the mean of the change in annual temperature
in ‘projection’ climate in this specific ESM. This yields a ESM-specific shape-
preserving mean-shifted climate. This landscape samples scenario uncertainty,
inter-model uncertainty, and regional differences in mean changes, but keeps
the shape of daily mean temperature distributions unchanged. The last climate
landscape is a ‘synthetic-general’ landscape. The difference with the ‘synthetic-
model’ approach is that we sum the mean ‘control’ climate over all ESM and the
mean change in annual mean temperature across ESM. This yields a mean shape-
preserving, mean-shifted climate, which aggregates heterogeneity between cli-
mate models. This landscape samples scenario uncertainty and regional diffe-
rences in mean changes while aggregating across ESMs and keeping the shape of
daily mean temperature distributions unchanged.

Rather than aggregating this data at the global scale, we construct regional
climate landscapes. Indeed, using a global dataset means that locations in which
a given temperature is relatively cold and places in which the same temperature
is relatively warm in the two locations fall within the same bin of temperature,
which distorts the picture of regional climate shifts, and biases the estimates used
to convert these climate shifts into economic damage. We aggregate at the level

1. On the one hand, adding more years around 2050 would enable us to capture more of the
internal variability which characterizes 2050 climate (Schwarzwald and Lenssen, 2022), for ins-
tance more El Niño cycles. On the other hand, it would come with a costly assumption of perfect
symmetry around 2050 in climate change dynamics. By capturing less internal variability, we
probably under-count the impact of including regional information.
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of five major Köppen regions (Beck et al., 2023) : arid, continental, polar, tem-
perate and tropical. It is reasonable to think that these climate classifications are
both good ensembles in terms of warming patterns but also in terms of damage
patterns to capture differences between relatively homogeneous regions. If the
differences between damage patterns differ for many other reasons (e.g. cultu-
ral and political), we capture some of the regional heterogeneity due to climatic
conditions. A finer disaggregation would reduce the statistical robustness of the
estimates we obtain from our econometric specification below because of limi-
ted sample size and variation. When building these climate landscapes, we keep
only locations for which we have economic data to estimate dose-response func-
tions below and treat each of these economic region within each climatic Köppen
region as a single unit.

2 Econometric estimates of climate damages

For the empirical analysis we combine Wenz et al. (2023)’s Database Of Sub-
national Economic Output (DOSE v2) with Hersbach et al. (2020)’s climate reana-
lysis (ERA5). We process the climate reanalysis by first calculating degree-days at
the grid-cell level and then aggregating to DOSE regions. We use the combined
data to estimate global and regional dose-response functions of GDP growth to
daily mean temperatures. We estimate the model :

git = αi + Pitβ +
B

∑
b=1

nbitγb + µt + ϵit

with the growth rate of GDP per capita PPP in USD in administrative unit i in
year t as git, with the number of days with daily mean temperature in the bin
indexed b as nbit, and with total annual precipitation Pit. Note that here, Pit is
indeed only a control, focused on global annual values, rather than regionally di-
saggregated daily ones (Kotz et al., 2022). The model also includes region fixed
effects αi and year fixed effects µt. Errors ϵit are clustered at the level of coun-
tries to account for spatial and temporal autocorrelation. We estimate this model
for all regions jointly and for each Köppen-Geiger climate zone k separately. Our
main parameters of interest are the coefficients of temperature bins γb (for the
global model) and γbk (for the regional models) which represent the non-linear
association between daily temperature levels and economic growth. For the re-
gional model, we use a gridded dataset on Köppen climate regions and assign to
every administrative unit the share of each climatic zones it is included in based
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on surface area. The 2°C temperature bins are winsorized at level 99% for econo-
metric estimation to limit the influence of rare events for which we do not have
sufficient observations. Furthermore, we follow Cruz and Rossi-Hansberg (2024)
and smooth the behavior of the point estimates across temperature bins on the
whole temperature distribution in 2050 with degree-two polynomials, assuming
that temperature effect on growth changes remains constant above and below our
upper and lower bins used for the estimation. We also weigh each point estimate
by the inverse of their standard errors to provide a greater weight to the more
accurate estimates.

3 Descriptive statistics

We give summary statistics for the warming and damage patterns of each re-
gion in 2050 for SSP5-8.5. Graphs on the left plot the distribution of mean daily
temperatures for all climate landscapes, taking the average of all five earth sys-
tem models. The distributions have different shapes, both in terms of their dis-
persion and their mean. The shifts in the average temperature are also of different
magnitude, which is consistent with the observation of spatially heterogeneous
global warming. Shifts in shapes are also diverse, and not just because of the
initial shape of each distribution as we show on the middle graphs. The middle
graphs describe the difference between the ‘synthetic-model’ and the ‘projection’
landscapes for different earth system models : for each 1°C temperature bin, it
gives the difference in frequency (in number of days) between two distributions.
The first distribution is constructed by adding to each daily temperature for each
climate model the mean of the annual anomaly observed in that model, thus ob-
taining a shape-preserving shift in mean, which is the assumption generally made
in the literature. The second distribution is taken from climate model projections
of daily mean temperatures. These difference can have opposite signs and various
magnitude depending on the model considered. The graphs on the right present
the minimum, central and maximum estimates of the two global and regional
dose-response functions of GDP growth rate to an additional day in a given bin
in comparison with a day in the [20 : 22°C] bin, estimated for each region. Our re-
gional dose-response functions reveals different damage patterns than the global
dose-response function. For instance, while the positive effect of colder tempera-
tures on GDP growth in the global functions stills holds with regional estimates
in the continental areas, the sign of this effect is reversed for polar and temperate
areas. For warmer days, in relatively warmer areas, the effect of higher tempe-
ratures goes in both directions, i.e. positive effect for arid areas, negative effects
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for tropical areas, while it is flat in our global estimate that conflates both clima-
tic zones. Disentangling global and regional damage patterns matter for climate
policy because it provides a more accurate picture of the spatial and temporal
heterogeneity in future climate damage.
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FIGURE 3.1 – Left Distribution of daily mean temperatures for four climate landscapes.
Middle Distribution of climate shift, i.e. difference in distribution of daily mean tempera-
tures under projection vs. a synthetic-model climate. Right Change in growth rate from
one day in this bin relative to one additional day in [20°C : 22°C].

Data are for all DOSE regions, SSP5-8.5, 2050.
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3 Quantification

1 Missing shape-related growth effect of climate change

We express the GDP growth effect of daily temperatures in climate projections
as a share of this effect in synthetic climate, i.e. in a setting where we assume that
the shape of the distribution of daily temperatures remains the same when the
mean increases. Indeed, we want to measure how much the change in the shape
of the distribution of daily mean temperatures matter for the estimation of eco-
nomic damages. To have a measure that approaches standard climate damages,
growth effects in warming climates are expressed with respect to growth effects
in control climate. Growth effect at each 1°C bin b is γb (γbk) if we use global
(regional) dose-response functions, where k stands for a Köppen-Geiger climate
zone. The global growth effect Ω for a given SSP and year in our climate land-
scape C for a given dose-response function in subadministrative region DOSE d
in Köppen-Geiger climate zone k is :

Ωglob,C
ymd =

(
∑b γbtC

bymd−∑b γbtcontrol
bymd

)
∑b γbtcontrol

bymd
, Ωreg,C

ymdk =

(
∑b γbktC

bymdk−∑b γbrtcontrol
bymdk

)
∑b γbdktcontrol

bymdk

Then, we apply a double difference procedure to find the change in growth
effect between synthetic climate and projections. For damage function γ, and
synthetic climate : DDω

ymdk = 100 ∗ (Ωω,projection
ymdk − Ωω,synthetic

ymdk )/Ωω,synthetic
ymdk , with

ω ∈ {global, regional}. This estimate expresses the share the missing shift in
shape represents in the standard estimates of damages assumed from shape-
preserving synthetic shift in mean. We summarize the values of this estimate for
various specifications in Figure 3.2 below which disentangles various layers of
uncertainty. On the top left graph, we plot the dispersion in our DD estimate for
each Köppen climatic region and each SSP, for each ESM (in blue) and the ave-
rage over ESM (in red). This graph captures how for each region the differences
between SSP and between climate models drives the impact omitting the whole
shape of warming pattern has on the assessment of damages. There is an im-
portant climate model uncertainty. Outside continental areas, depending on the
climate model used, the sign of the difference between the standard assumption
and the full shape of the distribution is either positive or negative. Part of this
structural uncertainty between climate models is already captured when compa-
ring climate models at the aggregate annual scale. Thus, on the top right graph,
we plot the dispersion between two methods to build our synthetic climate : ei-
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ther using the model-specific control climate and mean aggregate temperature in-
crease to build the new synthetic benchmark, or using the average over different
ESM. On the bottom left graph, we plot the difference in our estimates depending
on the dose-response function of GDP growth to daily temperatures that is used :
either the global dose-response function which combines potentially contradic-
tory effects of changes in temperature distribution over space, or the regional
estimates which might capture part of the spatial heterogeneity in damage pat-
terns. On the bottom right graph, we plot our coefficient for the central, minimum
and maximum estimates of the regional dose-response function to measure how
much parametric uncertainty for a given damage function specification matters
in comparison with structural uncertainty about the damage function, i.e. either
global or regional. All four sources of uncertainty that are hidden under the as-
sumption of a shape-preserving mean-shifted synthetic climate matter, especially
in the continental areas.

2 Aggregate impacts

While we build regional climate landscapes that use the granularity given in
climate datasets rather than too aggregated information to discuss climate policy,
we seek for global indicators that can easily be applied to aggregate economic
models. We compute for each DOSE region within each larger Köppen-Geiger
zone the share of missing growth due to disaggregated warming and damage
patterns. We use area-weighting to build DOSE-level estimates of missing growth
from DOSE*Koppen estimates. We then aggregate the DOSE-level growth effect
to the global scale based on the share of each zone in global GDP. We use the
synthetic-model approach to build a synthetic climate, assuming that aggregate
uncertainty between climate model is already taken into account in the literature
studying aggregate annual mean temperatures. Indeed, our study focuses on one
channel of uncertainty : the interactions between intra-annual warming patterns
and damage patterns at the regional scale. On left graph in Figure 3.3, we plot
our estimate of the share of missing growth effects for various ESM and the mean
across ESM under regional damages. On the right graph, we plot global DD for
two specifications of the dose-response function : either global or regional.

The assumption made in the literature of a shape-preserving shift in mean
annual global temperature interacted with global damage patterns thus yields
biased estimates of future economic damages of climate change. For all climate
models and across various specifications of damage patterns and economic scena-
rios, this bias is an underestimation of future damages : accounting for the shift
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FIGURE 3.2 – Double difference DD estimates for year 2050, all SSP and climatic regions.
Left Top For each ESM vs. average, using synthetic-model and regional damage Right
Top For synthetic-model vs. synthetic-general, using regional damage, averaging over
ESM Left Bottom For global vs. regional damage, using synthetic-model, averaging over
ESM Right Bottom For central, minimum and maximum estimates of regional damage,
using synthetic-model, averaging over ESM.

in regional shape would increase the actual damage by around 25% under all
concentration pathways in 2050. The shift in shape matters also for less carbon-
intensive pathways. Both uncertainty between climate models on the shape of
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regional warming patterns and uncertainty on the damage patterns matter. Their
interaction is likely to significantly alter the temporal and spatial distribution of
the economic damage caused by climate change. This change in the aggregate
picture of climate impacts should encourage greater mitigation and adaptation.
But what about the distributional effects?

3 Distributional impacts

We have focused on the aggregate impact of this omitted shift in regional daily
temperature shape. Now, when we look in more detail at the distribution of da-
mage, we see that there is no perfect correlation with income : the countries most
affected by these shifts in the patterns of intra-annual weather distribution are
not necessarily the poorest. In fact, the opposite is true, even if the data are wi-
dely scattered. In Figure (3.4) below, we show on the left that, for certain DOSE
regions, climate impacts are in fact lower when using climate projections with
intra-annual temperature distributions with regional response functions than in
a synthetic approach using a mean-shifted shape-preserving climate. In particu-
lar, we show on the right graph that gives the distribution of omitted impacts for
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each quantile of the 2015 distribution of DOSE regions in terms of USD GDP per
capita that this applies to the poorest 20% of regions, even if the distribution is
fairly skewed.
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FIGURE 3.4 – Left Distribution of impacts (in % of current estimates) across DOSE regions
Right Distribution of impacts across and within 2015 USD GDP per capita quantiles of
DOSE regions.

The colored bars span the interquartile range for each quantile. The black lines represent the mean
for each quantile. Estimates are for year 2050, SSP5-8.5.

Uncertainty about changes in the shape of regional temperature distributions
interacts with regional damage functions mainly concerning continental regions,
as we show on Figure (3.5), in line with estimates from Figure (3.5). This is parti-
cularly important if less significant impacts are expected in these regions, notably
on agricultural productivity, but also on regional amenities, which could justify
adaptations that reduce the total cost of climate change. The welfare benefit of
these adaptations would be particularly reduced if it turns out that these regions
have very significant welfare changes : impacts on growth up to 100% higher
than estimates based on global dose-responses interacted with shape-preserving
projected climates.
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FIGURE 3.5 – Map of DOSE regions with their associated missing-shaped related climate
impacts, as a share of 2050 estimated growth impacts along SSP5-8.5.

4 Conclusion

If climate-society relationships were linear, then aggregating would not make
any difference. But since they are nonlinear, what happens at the regional and
intra-annual levels matters. Indeed, switching from annual global mean tem-
perature to a regional annual distribution of daily mean temperatures affects
the magnitude of economic damages from climate change. This change comes
from heterogeneity in both damage and warming patterns across regions. Spatio-
temporal disaggregation, thus, reveals how uncertainty between climate models
on the whole shape of the distribution of future weather realizations cascades
down to regional damage estimates. This shape uncertainty affects risk rankings
across models and increases the magnitude of uncertainty between models. Mo-
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reover, accounting for daily temperatures rather than annual averages increases
the estimation of economic damages, a finding consistent with previous studies
(Rudik et al., 2022). In 2050, under SSP5-8.5, using regional damage patterns in-
teracted with the shift in the entire shape of the distribution of daily tempera-
tures, yields climate damages at the global scale that are 25% larger than the da-
mage obtained under the assumption of homogeneous damage patterns over the
world and shape-preserving shift in annual mean daily temperature. The shape
uncertainty about shifts in daily temperature distributions and regional damage
patterns should therefore be taken into consideration for decision-making.

To our knowledge, we provide the first comparison between various approaches
to spatial and temporal aggregation regarding impacts of changes in mean sur-
face temperatures on economic activity and quantify how much these often-overlooked
aggregation procedures matter empirically. We believe that this procedure can be
reasonably translated horizontally and vertically. Vertically, this framework can
be applied to other economic damages stemming, for instance, from changes in
maximum or minimum daily temperatures. Horizontally, the framework could
be used to infer results in regions for which we do not have socioeconomic data
to estimate damage functions. In this work, we have kept the DOSE regions for
the sake of consistency. But using Köppen-Geiger climatic zones, i.e. widely avai-
lable physical data, to build ensembles and generalize the results over these en-
sembles could be a useful detour at first, alongside a necessary deepening in the
availability of socioeconomic data, particularly in Africa.

Our analysis also comes with limitations. In particular, our estimation of re-
gional damage functions is based on the idea that differences in the economic
damage caused by weather—and therefore by climate change—is intimately lin-
ked to climatic zones. However, there are many factors that go well beyond geo-
graphical determinism that we do not explore here. Furthermore, Earth System
Models are imperfect, and some may not be able to capture well the shape (or
changes in the shape) of the temperature distribution (Kornhuber et al., 2023).
When it comes to estimating the future damage of climate change, other ap-
proaches use annual temperature (Bilal and Känzig, 2024) and thus avoid the
problem of time-fixed effects, which erase a large proportion of the impacts. The
question of aggregation is less of an issue in this case, as these approaches consi-
der annual temperature to be a sufficient statistic for estimating impacts. Never-
theless, the question of the relevance of past natural variability as a proxy for glo-
bal annual climate change based on complex processes and rising carbon concen-
tration remains. This question is left for future research. Finally, while we studied
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variations of warming patterns in space and time, and variation of damage pat-
terns in space, we have left out the question of variation of damage patterns in
time under a ‘swinging climate’ (Mérel et al., 2024)—i.e. adaptation to shifts in
climate. How might a given daily temperature yield different damages in any
particular region under a different climate, as the region moves away from its
normal climatic zone? Lastly, that raises the question of how adaptation might
interact with the entire distribution of climatic factors, a question left for further
research.
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5 Annex

1 Building climate landscapes

We scale the frequency of observations by the share of land area in each cell
using GPW4 dataset. We compare changes in shapes of daily mean temperature
distributions Tmr in five Köppen regions r and climate model m, i.e. the distribu-
tion of all Tmr daily mean temperatures in region r and model m, in four different
climates C. Climate C are : a control climate, ISIMIP projections, the synthetic dis-
tribution with model average, the synthetic distribution with average over mo-
dels. We bin the temperature distributions t at 1°C : f (.) is a function that bin the
distributions. Our final landscapes for each year are :

— Control climate, without climate change Tcontrol
mr = f (tcontrol

mr )

— ISIMIP projections Tproj
mr = f (tproj

mr )

— Synthetic model with model average are built by adding the difference
between binned projections and control climate
Tsynth.model

mr = f
(

tcontrol
mr + Tproj

mr − Tcontrol
mr

)
— Synthetic model with total average are built by adding the difference bet-

ween binned projections and control climate, averaged over all models m
in ensemble M
Tsynth.general

mr = f
(

tcontrol
mr + meanM(Tproj

mr − Tcontrol
mr )

)
Let us define a climate shift indices for a given year : CSImr = Tproj

mr −Tsynth.model
mr ,

which gives for each bin the difference in the frequency of this temperature in the
projections with respect to the synthetic shape-preserving mean-shifted climate
for each ESM. The Köppen region of use are :

Köppen regions

ARID

CONTINENTAL

POLAR

TEMPERATE

TROPICAL

FIGURE 3.6 – Köppen climatic zones.
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Chapitre 4

The biophysical channels of climate impacts

To what extent does regional economic activity shape regional climate impacts? Land
use land cover (LULC) changes with regional economic activity through agricultural
and urban land demands. At the regional scale, LULC changes affect climate impacts
through changes in albedo, evapotranspiration and roughness length, i.e. biophysical
channels. These spatially heterogeneous regional feedbacks have so far been neglected
in the quantitative spatial literature assessing the economic consequences of climate
change. Indeed, the literature focuses on the biogeochemical channel from global car-
bon concentration. Accounting for this additional biophysical feedback between regio-
nal economic activities and regional climate change yields important welfare implica-
tions for both adaptation and mitigation, as the biophysical feedbacks change tempera-
ture impacts and interact with regional adaptation decisions. I build a dynamic-spatial
sectoral equilibrium model to understand the impact of this omitted nonlinear physi-
cal mechanism and take the model to the data at the global gridded 1° resolution to
quantify its magnitude along ‘middle-of-the-road’ SSP2-4.5 with agents that adapt to
climate impacts through migration and trade. I leverage recent advances in the climate
adaptive response literature to estimate model-consistent dose-response functions of
regional amenities and sectoral productivities to regional annual distributions of daily
mean surface temperatures from the equilibrium conditions of the model. Im my ba-
seline SSP2-4.5 simulation, without biophysical impacts, almost all locations experience
negative welfare changes from non-linear regional intra-annual warming patterns inter-
acted with nonlinear binned damage patterns : there are no benefits to be expected from
climate change in the Northern Hemisphere. Adding biophysical channels, i.e. a non-
linear and time-varying downscaling from global to regional temperature distributions,
accounts for 2.4% of the aggregate biogeochemical welfare impacts of climate change.
Both biogeochemical and biophysical climate impacts are regressive, decreasing with
2015 income per capita levels.

Keywords : environmental policy, spatial integrated assessment models, endogenous
adaptation, land use land cover, albedo, evapotranspiration, soil roughness, downsca-
ling.

JEL Codes : Q50, R13, R14
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1 Introduction

‘Any local land changes that redistribute energy and water vapour between the land and the atmosphere
influence regional climate (biophysical effects, high confidence)’ (IPCC).

Uncertainties about changes in land conditions originating from anthropo-
genic land uses have become a major concern, as highlighted by IPCC in its
2019 special report on climate change and land (Masson-Delmotte et al., 2019).
Changes in land conditions have for instance a major impact on biodiversity and
contribute to global climate change through carbon releases or by reducing land
carbon storage potential. But in this study, I focus on the regional biophysical cli-
mate impacts of changes in regional land conditions. These biophysical impacts
are not driven by carbon emissions but by changes in albedo, evapotranspiration
and soil roughness, which can reduce or accentuate regional warming (Georgescu
et al., 2011; Alkama and Cescatti, 2016) depending on the location and season
(Duveiller et al., 2018b).

To my knowledge, economists usually omit these mechanisms in their assess-
ments of climate impacts : they focus on the biogeochemical channel of global
carbon emissions. For instance, in the burgeoning field of spatial integrated as-
sessment modelling (Desmet and Rossi-Hansberg, 2024), regional temperatures
at location r and time t are inferred from global average temperatures through
statistical downscaling, also called pattern scaling (Santer et al., 1990). As de-
picted in Fernández-Villalverde et al. (2024), pattern-scaling suggests a simple
functional relation such as : Tt(r) = f (TA

t ) + ηt(r), where local temperature Tt(r)
at grid cell r and time t is a response to global average temperature TA

t indica-
ted by f (.) and a stochastic local residual temperature variability term ηt(r). The
stochastic process that determines the distribution of local residual ηt(r) is assu-
med to be stationary and exogenous to regional economic activities. In this work,
I reconsider these two assumptions. As our understanding of the mechanisms
through which human activities and climate impacts interact goes to finer spa-
tial resolution, I investigate the heterogenous endogenous dynamic biophysical
regional impacts and their interactions with adaptation and economic decisions.
I quantify how much the regional biophysical channels driven by land use land
cover (LULC) changes matter along ‘middle-of-the-road’ Shared Socioeconomic
Pathways (SSP) 2-4.5.

Human-induced LULC changes affect regional climate through three key bio-
physical channels : change in albedo, change in evapotranspiration and change
in surface roughness length. Albedo is the fraction of solar radiation reflected
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by a surface. Evapotranspiration is the combined process of evaporation from
the Earth’s surface and transpiration from vegetation. Roughness length refers to
the measure of a surface’s roughness, which influences how air moves above that
surface. Surfaces with less albedo, e.g. because of urbanization, absorb more solar
radiation which leads to higher temperatures as more solar energy is converted to
heat in these areas. Evapotranspiration decreases in a given location, e.g. because
of deforestation, mean that less water is evaporated from surfaces, requiring less
energy to change state from liquid to gas while this energy is usually drawn from
the environment, cooling both the surface and the surrounding air. The decrease
in evapotranspiration can thus bring regional temperature increases. Rough sur-
faces, such as forests or areas with rugged topography, can slow down air mo-
vement, thereby promoting the cooling of local temperatures. Smoother agricul-
tural and urban areas, on the other hand, can reduce frictional drag on the air,
allowing warmer air from surrounding regions to flow into these areas. These
three biophysical mechanisms are affected by changes in physical land surface
characteristics, especially human-driven land use land cover changes : there are
regional feedbacks between human activity and these biophysical channels. The
two key human drivers that I study here are changes in agricultural and urban
land demands.

The biophysical channels matter for climate economics for two main reasons.
First, there are heterogeneous LULC changes to be expected around the world
depending on current LULC, future economic growth, structural change, demo-
graphy and climate impacts. Second, these biophysical channels interact with
adaptation decisions. For instance, population concentration in areas that are
less affected by climate impacts drives urban land demand and changes in re-
gional biophysical impacts that can reduce the aggregate benefits of migration
and change the distributional impacts of the climate burden between regions.
This might matter if climate change and population growth have their most da-
maging effects in similar places (Henderson et al., 2024). Heterogeneous climate
impacts and economic dynamics in different regions of the world and in different
sectors are driving changes in sectoral specializations, for example by shifting
the optimal climate zones for agricultural activities or changing relative prices.
These changes in sectoral specialization come with changes in agricultural land
extent which have biophysical impacts. The biophysical channels might reduce
or increase the benefits of regional adaptation expected from structural change.

There are large heterogeneities in the impacts of these biophysical feedbacks,
both physical and socioeconomic. On the one hand, there are spatial and tem-
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poral heterogeneities in the biophysical mechanisms. Indeed, observations show
that biophysical channels do not have the same impact over different periods of
the year (Duveiller et al., 2020). Furthermore, biophysical channels can vary in
sign and magnitude depending on regional background climate (Duveiller et al.,
2018b) : land use changes, for instance from forest to grassland, bring conflicting
changes in albedo (increase) and evapotranspiration (decrease). These conflicting
changes may lead to cooling or warming depending on which process dominates,
which depends on local climate background. Huang et al. (2020) explore this
spatial heterogeneity within Europe. On the other hand, there are large spatial
and temporal heterogeneity in the socio-economic drivers of land use land cover
changes bringing biophysical impacts, because there are various land use land
covers today and future land use land cover changes. Different paths of urbaniza-
tion are to be expected in different parts of the world, depending on demography,
economic growth and climate impacts, among others drivers (UN World Urba-
nization Prospects). Different paths of agricultural land use land cover changes
will also occur depending on structural change, food needs and heterogeneous
impacts of climate change on agricultural yields, etc. (Future of Food and Agri-
culture, UN FAO). The interaction between these sources of spatial and temporal
heterogeneity, both biophysical and socioeconomic, might even increase the di-
vergence between different locations over the world.

In this paper, I estimate the aggregate and distributional welfare impacts of
the biophysical channels of climate impacts along SSP2-4.5. First, I match LULC
scenario from LUMIP MESSAGE-Globiom along SSP2-4.5 with Duveiller et al.
(2018b) and Zhou et al. (2022) gridded estimates of the historical impact of LULC
changes on daily mean daytime and nighttime land surface temperatures. More
specifically, I compute the mean impact over thirteen Köppen-Geiger climate
zones as the regional biophysical feedbacks depend on background climate. I
then use a gridded linear relation between daytime and nighttime land surface
temperatures and daily mean surface temperature (Hooker et al., 2018), a metric
adapted to the measure of climate impacts on economic activities. This proce-
dure allows me to build a reduced-form representation of the regional biophysi-
cal feedbacks that can be projected using anticipated gridded changes in Köppen-
Geiger zones along SSP2-4.5 (Beck et al., 2023) and changes in LULC.

I build a two-sectors (agricultural sector and all other sectors), dynamic quan-
titative spatial equilibrium model (Eaton and Kortum, 2002; Redding and Rossi-
Hansberg, 2017) where locations differ in regional annual distribution of mean

153



daily surface temperature, sectoral productivities, amenities, bilateral trade and
migration costs. Productivities represent features that make different regions more
or less attractive in terms of the costs of production, which may include natural
advantages (such as proximity of natural resources) or induced advantages (such
as infrastructure). Regional amenities capture characteristics of each location that
make them more or less desirable places to live. Workers in each location have
preference for regional amenities and consume a variety of horizontally diffe-
rentiated goods. They experience idiosyncratic preference shocks. Workers are
mobile across locations but face time-invariant migration costs. Their migration
decisions are simplified a la Desmet et al. (2018b) to make the 1° gridded model
tractable. I use Caliendo et al. (2019); Kleinman et al. (2023) dynamic exact hat
algebra technique that avoids the shortcomings of regional fundamental ameni-
ties estimation. Finally, firms face monopolistic competition without intermediate
inputs in the production as in Conte et al. (2021), with time-invariant and symme-
tric bilateral trade costs that are not sector-specific, and without trade imbalances.
I solve the model under the assumption of a stationary equilibrium.

The simulations are done under exogeneous biogeochemical climate change
with projections of future distributions of daily mean temperatures taken from
the average of bias-adjusted (Lange, 2019) and down-scaled SSP2-4.5 CMIP6 ex-
periments of four Earth System models (ESM) (GFDL-ESM4, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MRI-ESM2-0) with the assumption of 2015 fixed land use. Bio-
physical impacts are added to these exogeneous projections with the implicit as-
sumption of a shape-preserving mean increase in the annual distribution of daily
mean temperatures. I could compare these simulations to CMIP projections with
exogenous land use change scenarios, but this would lump the two biophysical
and biogeochemical effects of land use change together : a change in land use in
an ESM leads to a biogeochemical impact via the global carbon cycle (e.g. carbon
releases from deforestation), which is not disentangled from the biophysical im-
pact. An important work is done by the LUMIP platform (Lawrence et al., 2016)
to disentangle these future land use impacts, especially for deforestation, e.g. in
Boysen et al. (2020). But these studies treat the various biophysical impacts in silo,
or model them along exogenous scenarios of population, trade, sector specializa-
tion, without modeling the endogenous reaction of agents to climate impacts as
in the recent quantitative spatial literature (Cruz and Rossi-Hansberg, 2024).

I follow Rudik et al. (2022) and use the equilibrium conditions of the theoreti-
cal model to compute model-consistent dose-response function of regional ame-
nities and sectoral productivities to distortions in the annual regional distribution
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of daily mean temperatures. The intuition behind this estimation approach is that
changes in migration and trade flows allows ceteris paribus to identify changes in
amenity and sectoral productivity levels. As the dose-response functions are es-
timated from the equilibrium conditions of the theoretical model, the simulation
results reflect the actual welfare impacts of climate change given the model’s as-
sumptions regarding macroeconomic dynamics and adaptation decisions. I com-
bine ERA-5 climate reanalysis (Hersbach et al., 2020) of the population-weighted
country-level annual distribution of daily mean temperatures with BACI CEPII
and Abel and Cohen (2019) datasets on trade and migration flows at the country
level. Focusing on the whole shape of the intra-annual distribution of daily mean
temperatures rather than an arbitrary moment such as the mean annual tempe-
rature (Fillon et al., 2024) allows to capture more complex changes in the high-
dimensional temperature vector. The temperature bins allows to capture some of
the non-linearity in the climate impacts (Burke et al., 2015).

To what extent does regional economic activity shape regional climate im-
pacts? My quantitative estimation of the biophysical channels of climate change
under SSP2-4.5 proceeds in two steps. First, I estimate the aggregate and distri-
butional welfare impacts of the SSP2-4.5 scenario, considering only the carbon
cycle—i.e., I ignore the impact of regional economic activity on regional climate
change. Then, I assess the aggregate and distributional impacts of SSP2-4.5 with
the addition of biophysical channels. Two key conclusions emerge from the first
step, where I estimate the baseline impacts of biogeochemical climate change.
First, climate change impacts are negative for most regions : by accounting for
intra-annual warming patterns and non-linear damage patterns across tempe-
rature bins, I find no evidence of benefits from warming in the Northern Hemis-
phere. The aggregate welfare impact of SSP2-4.5 is, however, consistent with exis-
ting literature ; most impacts are driven by the non-linear effect of temperature
distortions on sectoral productivities. Second, biogeochemical climate change is
regressive : the magnitude of welfare changes under SSP2-4.5 is inversely rela-
ted to initial income levels in 2015. In the second step, I estimate the impact of
biophysical channels. From my simulations, two conclusions arise. First, regional
economic activity does indeed influence regional climate impacts and the corres-
ponding welfare changes. On average, this additional biophysical effect accounts
for 2.5% of the biogeochemical impacts estimated in the first step. Second, the
biophysical impacts vary across both time and space. This heterogeneity is, first,
socioeconomic : it depends on scenarios of urban land-use change and the net
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transitions of shrublands and forests into croplands. It is also climatic : the effect
of biophysical channels depends on the climate zone in which a location is situa-
ted (e.g., arid, temperate, etc.), with these classifications shifting over time due to
global climate change. For some biophysical channels, this heterogeneity is also
seasonal, which further strengthens the case for considering the intra-annual dis-
tribution of temperatures in the study of climate impacts. In my simulations, I
find that most locations experience a negative impact from biophysical channels
on welfare under SSP2-4.5. Like the biogeochemical impacts, the biophysical ef-
fects are regressive relative to 2015 income levels.

I contribute to three main strands of economic literature. First, I contribute to
the growing literature in climate economics using dynamic spatial quantitative
equilibrium model to measure the impacts of climate change under endogenous
and regional adaptation (Krusell and Smith Jr, 2022; Cruz and Rossi-Hansberg,
2024). In comparison with these spatial integrated assessment models, I do not as-
sume a time-invariant exogenous linear relation between global climate change
and regional climate impacts. Indeed, downscaling from global to regional cli-
mate change cannot be considered as stable across time and space : it is not exo-
geneous to our regional economic activities. Averaging over multiple determi-
nistic draws taking the whole scientific information into account, e.g. similar to
work of Desmet et al. (2018a) on sea level rise but in application to parametric
uncertainty over regional transient climate response to global cumulative emis-
sions, would not allow to capture these nonlinear biophysical mechanisms. Thus,
in addition to non-linearities in climate impacts, largely documented since semi-
nal work from Schlenker and Roberts (2009); Burke et al. (2015), i.e. non-linearity
in the mapping from a given summary statistics of regional climate change to
economic impacts on amenities and productivities, I add physical non-linearities
in the mapping from global climate change to regional climate change via endo-
genous LULC changes. Another venue in this literature is to use actual climate
projections (Rudik et al., 2022; Bilal and Rossi-Hansberg, 2023) but this implies
that LULC are either assumed time-invariant, or that the biophysical channels of
LULC are entangled with their biogeochemical impacts.

Second, I contribute to the literature modelling adaptation which has develo-
ped in response to the Lucas critique adressed to the standard climate-economy
models (Nordhaus, 2008; Barrage and Nordhaus, 2024) : in comparison with pre-
vious approaches, I study how adaptation decisions might interact with climate
impacts. Thus, I relate to the literature on stuctural transformation under a chan-
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ging climate (Conte et al., 2021; Albert et al., 2021; Nath, 2022) and urbanization
and their interaction with LULC changes (Michaels et al., 2012; Ahlfeldt et al.,
2015; Coeurdacier et al., 2022; Eckert and Peters, 2022). I quantify the impact of
these sectoral specialization and urbanization changes on regional climates via
biophysical mechanisms.

Third, I contribute to the literature studying the interactions betweeen eco-
nomic activity, land uses and climate impacts. This literature usually focuses on
forest covers (Grosset et al., 2023) and micro-scale impacts, for instance health
impacts related to urban heat island (Manoli et al., 2019). I extend this literature
in three directions : I consider various transitions in land uses (transition from fo-
rests to croplands, transition from shrublands to croplands, transition from non-
impervious to impervious surfaces), at the global scale (around 13000 gridded
locations) and with larger regional impacts at the 1° gridded resolution, in res-
ponse to climate scientists’ concerns that biophysical impacts are not solely local
(Duveiller et al., 2018b; Chakraborty and Qian, 2024).

2 Motivation

1 Regional biophysical channels and their impacts

1 Impact of regional agricultural land demand on regional climate

Changes in agricultural LULC have heterogeneous impacts on regional cli-
mates and depending on the season. Duveiller et al. (2018a) provide gridded
estimates of climate impacts stemming from regional transitions from and to
croplands at 1° spatial resolution. While the authors also provide estimates for
grasslands, they do not differentiate between rangelands grazed by domestic li-
vestock and other uses. I thus focus on changes in croplands without considering
pastures. I compute the mean temperature impact of these land transitions over
Köppen-Geiger climate zones because biophysical impacts depend on regional
climate backgrounds (Duveiller et al., 2020). In table (4.1), I give the distribution
of change in mean daily surface temperature observed for two LULC transitions
in all Köppen-Geiger climatic zones : transition from forests to croplands and
transition from shrublands to croplands. I convert daytime and nighttime land
surface temperatures to mean two-meters surface temperature using gridded li-
near relations uncovered in Hooker et al. (2018).
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Koppen-Geiger climate zone Forests to Croplands Shrublands to Croplands
Arid, desert - / - 0.0108/0.0169°C

Humid continental 0.0078/0.0015°C -0.0102/0.0018°C
Humid subtropical 0.002/0.0017°C 0.0046/-0.0021°C

Mediterranean 0.0029/0.0003°C - / -
Mediterranean continental -0.0087/0.0007°C -0.0007/-0.0025°C

Oceanic -0.0013/-0.0038°C 0.0098 / - °C
Semi-Arid -0.0015/0.0013°C 0.0043/0.009°C

Subarctic -0.0037/0.0005°C -0.0048/0.0028°C
Tropical, Monsoon 0.0022/0.0001°C 0.0032/-0.0033°C

Tropical, Rainforest 0.0017/0.003°C 0.0043/-0.0079°C
Tropical, Savannah -0.0048/-0.0004°C 0.0026/0.0037°C

Tundra 0.0022/0.0104°C 0.0148/-0.0016°C

TABLE 4.1 – Change in monthly (January/July for illustration) mean daily surface
temperature (in °C) for various Köppen-Geiger climatic zones for a 1% absolute
change in land use for two net transitions of interest : from forests to croplands,
from shrublands to croplands. 1% absolute change over 1° gridded regions re-
presents around 123km2 at Equator and 87km2 on the French mainland. Data is
missing for some combinations.

2 Impact of regional urban land demand on regional climate

Changes in urban LULC have an impact on regional climates (Zhou et al.,
2022). To my knowledge, most studies focus on local urban heat islands effect
in cities while I refer to all global artificial impervious surfaces as these areas
have temperature impacts that go beyond local effects (Chakraborty and Qian,
2024). Past decades have seen large changes in global artificial impervious sur-
faces. Zhou et al. (2022) give gridded regional climate impacts of global artifi-
cial impervious surfaces extension at 50km x 50 km resolution. More specifically,
the authors give the change in urbanization over 1985 to 2015 and the change
in daytime and nighttime land surface temperature (LST) due to increase in ur-
banization over the same period. I convert daytime and nighttime LST to mean
two-meters surface temperature using Hooker et al. (2018). I compute the mean
impact over Köppen-Geiger climate zones because I expect the impact to depend
on regional climate background as for urban heat islands (Zhao et al., 2014). In
table (4.2), I give the distribution of annual mean daily temperature changes from
a 1% increase in impervious surfaces.
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Mean change Koppen-Geiger climate zone
0.0077°C Arid, desert
0.0096°C Humid continental
0.0115°C Humid subtropical
0.0103°C Mediterranean
0.0083°C Mediterranean continental
0.0106°C Oceanic
0.0076°C Semi-Arid
0.0068°C Subarctic
0.0108°C Tropical, Monsoon
0.0077°C Tropical, Rainforest
0.0123°C Tropical, Savannah
0.0114°C Tundra

TABLE 4.2 – Change in mean daily temperature (in °C) for various Köppen-Geiger
zones for a 1% absolute change in impervious surfaces over 1° regions.

In order to use these estimates for simulations using distributions of daily
mean temperatures, I make two assumptions. First, I assume homogeneity in the
shift in distribution of daily mean temperatures within each year (urban land)
and each month (croplands). Second, I assume that the change computed for each
Köppen-Geiger zone holds in the future for the same climatic zone.

3 Köppen-Geiger climates

I plot the 2015 distribution of Köppen-Geiger climate zones.
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FIGURE 4.1 – 13 Köppen-Geiger climate reference regions in 2015.
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According to Beck et al. (2023), 8% of current land surface will transition to
another Koppen-Geiger region along SSP2-4.5. Thus, I can not use fixed current
Koppen-Geiger zone while the sign and magnitude of the biophysical channel
stemming from land use land cover changes depend on it. I use Beck et al. (2023)
data to project in which Köppen-Geiger zone each 1° grid cell will be along SSP2-
4.5. Regions that change affiliation between 2015 and 2100 are :

-50

0

50

-100 0 100
Longitude

La
tit

ud
e Along SSP2-4.5

Not changed

Changed

FIGURE 4.2 – 1° locations who change Köppen-Geiger classification between 2015 and
2100 under SSP2-4.5.

2 Impact of economic activities on LULC changes

Once I have retrieved these estimates linking LULC to biophysical impacts, I
map changes in economic activities to LULC changes. In table (4.3), I give sum-
mary statistics for the distribution of cumulative net transitions from forests to
croplands, from rangelands 1 to croplands, from non-impervious to impervious
surfaces from 2015 to 2100 under SSP2-4.5 in MESSAGE-Globiom (Hurtt et al.,
2020), stored on the LUMIP platform.

1. As a first approximation, I assume that biophysical channels estimated in Duveiller et al.
(2018b) for generic shrublands applies to the MESSAGE Globiom category of rangelands that
does not include domestic pastured grasslands. I could disentangle further between savannas
and shrublands.
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Quantiles Forests to croplands Rangelands to croplands Non-urban to urban
0% -56.88 -27.19 -4.65

20% -0.49 0.00 0.00
40% 0.19 0.01 0.03
60% 1.01 0.17 0.13
80% 3.60 0.83 0.51

100% 63.96 43.36 19.19

TABLE 4.3 – Cumulative net change (as a share of total cell extent, in %) between
2015 and 2100 in LUMIP MESSAGE-Globiom SSP2 4-5 for the 1° gridded loca-
tions used in the simulations, from forests to croplands (left), from rangelands to
croplands (middle), from non-impervious to urban impervious surfaces (right).

Interacted with biophysical changes from tables (4.1) and (4.2), these LULC
changes have a heterogeneous impact on the future annual distributions of daily
mean temperatures around the world and over time. These dynamic biophysi-
cal impacts affect the future distribution of economic activities, populations and
welfare throughout the world in a way that is omitted from estimates of climate
change impacts of the quantitative spatial literature that uses time-invariant li-
near temperature down-scaling. Model that use projections from CMIP6 earth
system models either assume fixed land use or use projections forced with direct
human forcing such as land use changes which do not differentiate between the
various channels by which land and other elements of the SSP affect climate, e.g.
the specific biophysical channels that we study here.

I have retrieved estimates linking economic activity to heterogeneous biophy-
sical impacts at the regional scale via changes in agricultural and urban land de-
mands. I build a spatial sectoral equilibrium model to understand how these re-
gional feedbacks interact with standard biogeochemical climate impacts and re-
gional adaptation decicisions. I quantify how these dynamic mechanisms shape
the distribution of economic activity, population and climate impacts along SSP2-
4.5.
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3 Theoretical Model

1 Households

1 Preferences and migrations

Period utility of a worker j who resides in location r at t is multiplicative in
four elements : the level of regional amenities at(r) that captures how valuable
living in a given location is other things being equal, the consumption of goods
Ct(r), an individual-specific idiosyncratic preference shock ϵ

j
t, drawn from a Fré-

chet distribution (i.i.d. across locations, individuals, and time) with a shape pa-
rameter that equals the elasticity of migration to real income, and the cost of mi-
grating from location r in period s - 1 to a location r in period s.

U j
t(r) = at(r)Ct(r)ϵ

j
t(r)Π

t
s=1m(rs−1, rs)

−1 (4.1)

Dynamic migration decisions are simplified to static decisions as in Desmet
et al. (2018b), so that : m(s, r) = m1(s)m2(r) and m(r, r) = 1, i.e. there is no
cost to staying in the same place and the utility discount from migration is the
product of origin and destination-specific discounts. This yields that m2(r) =

1/m1(r), i.e. the cost of entering a location is fully compensated by the benefit
from leaving. This symmetry assumption allows to reduce the dimension of my
spatial dynamic migration problem with many locations and makes it tractable
at the global 1° gridded scale with standard resolutions methods.

2 Consumption and income

I assume a Cobb-Douglas preference structure between goods and a Spence-
Dixit-Stiglitz preference structure between horizontally differentiated varieties
for each good, with 1/(1 − ρ) the elasticity of substitution between goods. I as-
sume ρ > 1 in my setting, so that varieties are substitutes. χi is the fixed share of
good i in the worker’s expenditure. Consumption of goods at time t in location r
writes :

Ct(r) = ΠK
k=1

[∫ 1

0
ckω

t (r)ρdω

] χi
ρ

(4.2)

Workers in location r supplies one unit of labor inelastically and receive wage
wt(r) in location r and sector k in which they live in period t so that total in-
come is : yt(r) = Lt(r)wt(r)/

(
Πk∈KPk

t (r)
χk
)

where Πk∈KPk
t (r)

χk
is the ideal price

index over K sectors. There is no money lending, so every period agents fully
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consume their income and Ct(r) = yt(r). In each location, there is immobile and
non-accumulating capital which I call regional sectoral structures Hk

t as in Ca-
liendo et al. (2019). Hk

t is assumed to be fixed over time and generate a rent that
is fully used to maintain these structures.

3 Regional amenities

Following Desmet et al. (2018b), idiosyncratic non-weather time-invariant fun-
damental regional amenities āt(r) are affected by congestion, with Lt(r) the po-
pulation in location r at time t and λ the congestion elasticity of amenities to
population density. Following Rudik et al. (2022), regional amenities at(r) are
multiplicatively separable in a weather component exp( f [Tt(r); ζa]), where Tt(r)
is a vector of weather variables that summarizes the high-dimensional climate,
f an arbitrary function taken over this distribution (e.g. orthogonal polynomials,
cubic splines) and ζa the set of parameters to be estimated that governs how the
weather vector affects regional amenities non-linearly. In my benchmark estima-
tion for ζa, I use third-degree orthogonal polynomials for smoothing across the
annual distribution of daily mean temperatures with 1°C temperature bins. Re-
gional temperature is a function of the biogeochemical cycle, taken from exoge-
neous SSP projections, and the biophysical channel driven by endogenous LULC
changes. Regional amenity writes : at(r) = āt−1(r)Lt(r)−λexp ( f [Tt(r); ζa]). Des-
met et al. (2018b) show that ut(r) = at(r)yt(r) fully summarizes how individuals
value the amenity and production characteristics of a location. But uncovering
the initial distribution of non-weather time-invariant amenities āt(r), i.e. what
makes a location attractive irrespective of economic activity, is challenging 2. I
use Caliendo et al. (2019)’s dynamic exact hat algebra approach to get around
this issue.

4 Dynamic exact hat algebra and population dynamics

Following Desmet et al. (2018b), the share of the population in location r that
moves to location s from t-1 to t among all possible locations N is :

µt(rs) =
ut(s)1/Ωm2(rs)−1/Ω

∑n∈N ut(n)1/Ωm2(rn)−1/Ω (4.3)

2. Attempts include Desmet et al. (2018b), who use model inversion to recover these initial
amenities with subjective well-being survey from the Gallup World Poll, and Cruz and Rossi-
Hansberg (2024) with Kummu et al. (2018)’s gridded data on reconstructed human development
index.
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Following Caliendo et al. (2019) and Balboni (2019), I write the change in the
bilateral matrix of migration flows in dynamic exact hat algebra :

µ̇t+1(rs) =
µt+1(rs)

µt(rs)
=

u̇t+1(s)1/Ω

∑n∈N µt(rn)u̇t+1(n)1/Ω (4.4)

And, as the idiosyncratic non-weather dependent part of regional amenities
are constant in time : u̇t+1(r) = ẏt+1(r)L̇t+1(r)−λexp [ f (Tt+1(r), ζa)− f (Tt(r), ζa)].
Once I have migration flows, I build population dynamics for each location, ac-
counting for exogenous birth and death rates from SSP projections without mi-
grations. In comparison with Cruz (2021), I do not model endogenous fertility
and death rates. Population dynamics, with Lt(r) = ∑k∈K Lk

t (r), writes :

Lk
t+1(r) = (bt+1(r)− dt+1(r))Lk

t (r)+
N

∑
l=0,l ̸=r

∑
k∈K

µt+1(lr)Lk
t (l)−

N

∑
l=0,l ̸=r

∑
k∈K

µt+1(rl)Lk
t (r)

(4.5)
Thus, to recover the full dynamics of population under changing climate, I

need gridded projections for births and deaths rates along SSP2-4.5 without mi-
gration, a guess for the change in utility, observed initial bilateral matrix of migra-
tion flows µ0(rs), initial distribution of sectoral population Lk

0(r) and the gridded
path of the future annual distributions of mean daily temperatures. Then, per-
iod by period, I can recover migration flows, without information on the initial
distribution of non-weather time-invariant regional amenities.

2 Production

1 Profit maximization

I assume that each 1° economy produces a continuum of varieties ω in sector
k with a Cobb-Douglas production technology. A firm produces qkω

t (r) units of
good from sector k and variety ω in location r at t with technology

qkω
t (r) = zkω

t (r)Lkω
t (r)µk

Hkω
t (r)1−µk

and constant returns to scale with two factors of production, regional sectoral
structures and labour, Hkω

t (r) and Lkω
t (r). I assume away inter-sectoral intra-

location trade, i.e. intermediate inputs in the production function. zkω
t (r) is a

location-sector-variety random variable drawn independently for each triplet (r, k, ω)
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from a Frechet distribution :

Fkω
t (r) = exp

[
−Zkω

t (r)(z)−θk
]

.

Firms are perfectly competitive. Taking all prices as given, a firm producing va-
riety ω of good in location r and sector k chooses inputs to maximize static pro-
fits :

Πkω
t (r) = pkω

t (r)qkω
t (r)− wt(r)Lkω

t (r)− Rt(r)Hkω
t (r),

where pkω
t (r) is the price of variety ω of good produced and sold in location

r and sector k and input costs are not sector-specific. The unit price of an input
bundle in location r, i.e. the marginal cost of production, with κk the sector-specific
constants, writes :

xk
t (r) = κk(wt(r))µk

(Rt(r))1−µk
.

First-order conditions of the firm’s profit maximization problem for sector k, time
t and location r relate regional structure rents to wages and sectoral labour em-
ployment levels :

Rk
t (r)Hk

t (r) = wt(r)
1 − µk

µk Lk
t (r).

2 Regional productivities

As for amenities, productivity Z in each location r is multiplicatively sepa-
rable in a vector of weather variables, where Z̄ is non-weather base producti-
vity : Zk

t (r) = Z̄k
t (r)exp (g[Tt(r); ζz]). Non-weather productivity Z̄k

rt grows exo-
genously 3 at a rate ϕ that is not sector-specific. In each location, the vector of
temperatures T depend on both biogeochemical and biophysical channels. In hat
algebra, productivity changes in location i, sector k and time t write Żk

t+1(r) =

ϕexp (g[Tt+1(r); ζz]− g[Tt(r); ζz]), where ζz is a set of parameters to be estima-
ted that govern how productivity changes non-linearly across temperature bins
and g an arbitrary function over the regional annual distribution of daily mean
temperatures Tt(r).

3 Trade, prices, market clearing

I use time-invariant iceberg trade costs τrs from location r to s among N lo-
cations. The trade costs are not specific to sectors. Following Eaton and Kortum

3. Spatial diffusion models might not reflect how innovation spreads (Audretsch and Feld-
man, 1996).
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(2002), trade shares write :

λk
t (rs) =

Zk
t (s)

(
xk

t (s)τ
k
rs
)−θk

∑N
l Zk

t (l)
(
xk

t (l)τ
k
rl

)−θk (4.6)

where λk
t (rs) is the share of expenditures from region s and sector k in region

r total expenditures from sector k. The price index for industry k in region r is
therefore, with Γk a constant and 1 + θk > σk :

Pk
t (r) = Γk

(
N

∑
l=1

Zk
t (l)[x

k
t (l)τ

k
rl]

−θk

)−1/θk

(4.7)

Finally, market clearing at t in r means that labor income in sector k equals
the labor share of global expenditures from location r and sector k product :
wt(r)Lk

t (r) = χk ∑N
l λk

t (lr)
[
wt(l)Lk

t (l)
]
, with χk the share of goods from sector

k in location’s expenditures. Combining this equation for both sectors yield a
clearing equation from which guess on wage can be updated for the period equi-
librium.

4 Production in exact hat algebra

In exact hat algebra, change in unit price of an input bundle is :

ẋk
t+1(r) = (ẇt+1(r))µk

(Ṙk
t+1(r))

1−µk
(4.8)

and from equation on rents I have that : Ṙk
t+1(r) =

ẇt+1(r)
Ḣk

t+1(r)
L̇k

t+1(r) and Ḣk
t+1(r) = 1.

Finally, in dynamic hat algebra, change in price index writes :

Ṗk
t+1(r) =

(
N

∑
l=1

λk
t (rl)Żk

t+1(l)[ẋ
k
t+1(l)]

−θk

)−1/θk

(4.9)

Change in trade flows writes :

λ̇k
t+1(rs) =

Żk
t+1(s)

(
ẋk

t+1(s)
)−θk

∑N
l λk

t (rl)Żk
t+1(l)

(
ẋk

t+1(l)
)−θk = Żk

t+1(s)

(
ẋk

t+1(s)

Ṗk
t+1(r)

)−Θk

(4.10)
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3 Estimation of dose-response functions

Climate impacts now come into play. They multiplicatively affect sectoral pro-
ductivity and amenities, thereby distorting market clearing and the distribution
of populations and economic activities over time. I follow the insights of Eaton
and Kortum (2002) that trade flows contain information on productivity, and in-
sights from Rudik et al. (2022) that migration flows contain information on ame-
nity value. I use the equilibrium conditions of the model governing bilateral mi-
gration and trade flows to estimate impact of regional climates on regional ame-
nities and productivities. I follow a procedure close to Rudik et al. (2022) with
more countries, different datasets and relative levels of temperature distributions
winsoring rather than absolute temperature bounds. This procedure guarantees
internal validity of my estimates, i.e. model-consistent amenity and productivity
dose-response functions. Indeed, I leverage the model’s structure at equilibrium,
so that the non-linear dose-response functions account for the dynamic and spa-
tial interactions modelled in my framework. Finally, the estimates are more robust
to spatial autocorrelation than standard panel fixed-effect approaches.

1 Regional amenities

The intuition behind this estimation is that an observed change in bilateral mi-
gration flows, controlling for changes in relative populations and outputs, migra-
tion costs and country and time fixed effects, as well as differences in annual dis-
tribution of daily mean temperatures between countries allows to identify nonli-
near impacts of an additional day in a temperature bin on amenity value. Indeed,
the model at equilibrium yields :

log
(

µt(rs)
µt(rr)

)
= 1

Ω log
(

āt−1(s)
āt−1(r)

)
− λ

Ω log
(

Lt(s)
Lt(r)

)
+ 1

Ω log yt(s)
yt(r)

+ 1
Ω log(m(r, s)) + 1

Ω ( f (Tt(s), ζa)− f (Tt(r), ζa))

(4.11)
The left hand side is the ratio of households who move to location s (r, s)

versus stay in the original location r (r, r) from t-1 to t. The right side has five
components. The first component is the ratio of non-weather time-invariant idio-
syncratic amenities. The second and third components are the difference in popu-
lation and output. The fourth component is the difference in time-invariant mi-
gration costs. Finally, I estimate the non-linear marginal impact of an additional
day in a temperature bin on amenity values, ζa, from f (Tt(s), ζa)− f (Tt(r), ζa).
Arbitrarily, I use a third-degree orthogonal polynomial smoothing across daily
1°C binned mean temperatures for f. For the empirical estimation, I combine
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Abel and Cohen (2019) data on international migrations flows from 1990 to 2019
with World Bank population and GDP per country estimates and Hersbach et al.
(2020)’s climate reanalysis (ERA5) for daily mean surface temperatures. I process
the climate reanalysis to aggregate it at the country level, weighting the 0.25° tem-
perature observations by population levels. The estimation with Poisson Pseudo
Maximum Likelihood and ψrs an origin-destination fixed effect, is :

log
(

µt(rs)
µt(rr)

)
= − λ

Ω log
(

Lt(s)
Lt(r)

)
+ 1

Ω log
(

yt(s)
yt(r)

)
+ 1

Ω ( f (Tt(s), ζa)− f (Tt(r), ζa)) + ψrs + δt + ϵrst

(4.12)
with a congestion elasticity of regional amenities to population, λ = 0.32,

taken from Desmet et al. (2018b). The regression is done on a temperature distri-
bution that is winsorized at 95% so that the tails do not drive results.

Variable Coefficient p-value

First-Degree Orthogonal Polynomial -2.21e-03 3.84e-03
Second-Degree Orthogonal Polynomial -1.23e-03 3.26e-02
Third-Degree Orthogonal Polynomial -9.26e-04 2.30e-02

Wald test, joint significance 1.81e+01 4.20e-04
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FIGURE 4.3 – Non-linear marginal effect (in %) of an additional day in the 1°C tempera-
ture bin on regional amenities. Estimates are computed with 95% confidence intervals.
The regression is done with 95% winsorized bins [-2°C : 31°C] for 194.032 observations.
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In this dose-response function, estimates are for myopic households as my
global approach does not allow to solve a fully dynamic migration decisions for
12674 locations. This approach with myopic households might underestimate ne-
gative marginal effects of low temperatures on regional amenities as shown in
Rudik et al. (2022), which might explain why the marginal effect of low tempe-
rature on regional amenity is positive. As suggested in Albouy et al. (2016) for
US households, we find a positive effect of moderate temperatures (around 18°C)
on amenity value and large and increasing negative value of excess heat on the
amenity value, consistent with observations on US data that households will pay
more on the margin to avoid excess heat than cold. Finally, as amenity values are
infered from migration flows, a drawback of this estimation approach is that stan-
dard migration costs which are commensurable with changes in amenity values
cannot be distinguished from the impossibility of migrating, such as administra-
tive barriers, which are not. But I do not think that there is a reason to believe that
it specifically biases a temperature bin over another.

2 Regional productivities

I follow a close procedure for regional productivities. The intuition behind
this estimation is that an observed change in bilateral trade flows at the product
level, controlling for changes in relative input costs, trade costs, and country and
time fixed effects, as well as differences in annual distribution of daily mean tem-
peratures between countries allows to identify nonlinear impacts of an additional
day in a temperature bin on productivity value for the specific product. At equi-
librium, expenditures of region n on industry k goods from region i write :

Xk
t (rs) =

(
Γk
)−θk Zk

t (s)(xk
t (s))

−Θk
(τk

t (rs))−Θk

(Pk
t (r))Θk Xk

t (r) (4.13)

Normalizing by importer’s own expenditures Xk
rr in industry k, using the ex-

pression for Zk
it and taking the logarithm on both sides of the equation yields :

log
(

Xk
t (rs)

Xk
t (rr)

)
=
[
g(Tt(s); ζk

Z)− g(Tt(r); ζk
Z)
]
+ log

(
Z̄k

t (s)
Z̄k

t (r)

)
− θklog(τk

t (rs))− θklog
(

xk
t (s)

xk
t (r)

)
(4.14)

The left hand side is the ratio of expenditures on products of sector k from
another region i to expenditures on products of sector k produced domestically.
In equilibrium, it is equal to four terms. The first term on the right is the marginal
difference in productivity between i and n due to climate impacts. Arbitrarily, I
use a third-degree orthogonal polynomial smoothing across the regional annual
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distribution of daily 1°C binned mean temperatures. The second term is the dif-
ference in productivity due to non-weather fundamental differences. The third
term are icerberg trade costs between i and n. The fourth term is the relative
price of inputs. For the empirical estimation, I combine BACI CEPII dataset for
yearly sectoral international trade from 1995 to 2019 with World Bank population
and GDP per country and sectors and Hersbach et al. (2020)’s climate reanaly-
sis (ERA5) for annual distributions of daily mean surface temperatures at the
country level. I process the climate reanalysis to aggregate it at the country level,
weighting the 0.25° daily mean temperature observations with GHSL-POP popu-
lation weights. I include tariffs in the fixed effects as data on tariffs (preferential
and most-favoured nation) and non-tariffs trade costs τ from WITS database is
very incomplete. I estimate the following regression with PPML :

log
(

Xk
t (rs)

Xk
t (rr)

)
= Ik ∗

[
g(Tt(s); ζk

Z)− g(Tt(r); ζk
Z)
]
+ ζXXk

t + ρk
t + ϕk

ni + ϵk
nit (4.15)

with ρk
t sector-year fixed effects and ϕk

ni importer-exporter-sector fixed effects.
With Xt, I proxy for unobserved relative input costs with sectoral GDP per ca-
pita. Values for θk are taken from Caliendo and Parro (2015). Estimates are done
at ISIC Rev.3 product level and the sector-specific response functions come from
a regression where I interact the response function g with a set Ik of two sector
dummy variables : agriculture and non-agriculture. The sector-specific regression
is done on a distribution that is winsorized at 95%, so that the tails of the tempe-
rature distributions do not drive the results.

Variable Coefficient p-value

First-Degree Orthogonal Polynomial - Agriculture 1.57e-02 2.81e-08
First-Degree Orthogonal Polynomial - Non Agriculture -2.02e-02 9.58e-02

Second-Degree Orthogonal Polynomial - Agriculture -3.20e-02 0.00e+00
Second-Degree Orthogonal Polynomial - Non Agriculture -2.22e-02 8.75e-04

Third-Degree Orthogonal Polynomial - Agriculture -1.70e-02 0.00e+00
Third-Degree Orthogonal Polynomial - Non Agriculture -2.07e-02 4.49e-03

Wald test, joint significance (Agriculture) 2.62e+02 0.00e+00
Wald test, joint significance (Non Agriculture) 3.01e+01 1.31e-06
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FIGURE 4.4 – Non-linear marginal effect of an additional day in the 1°C temperature bin
on regional sectoral productivities

Estimates are computed from regression (4.12) with 95% confidence intervals and third-order
orthogonal polynomials. The regression is done with 95% winsorized bins [-2°C : 31°C] for
N=14.527.500 observations. For the simulations, I assume that below and above these thresholds,
marginal effects remain constant.

As in Rudik et al. (2022), and consistent with previous literature (Burke et al.,
2015), I find substantial evidence of negative impacts from elevated mean daily
temperatures on sectoral productivity, affecting both agricultural and non-agricultural
activities. Surprisingly, the marginal effects are more pronounced in non-agricultural
sectors, even if confidence intervals are wider. Two factors may explain this fin-
ding. First, I employ a winsorizing technique at 31°C computed from the tempe-
rature distribution rather than an absolute threshold. This approach may wron-
gly reflect extreme temperature effects on agriculture, particularly at very high
temperatures, due to a lack of sufficient observations. Second, since the analy-
sis infers climate change impacts on sectoral productivity from trade flows, the
estimates are on products and people that are engaging in international trade.
This might distort the estimated damage since agricultural sectors involved in
export may be more competitive and adaptable, potentially underestimating the
full extent of climate impacts. Related to this interpretation, a limitation of my
estimation approach is that it does not allow for the estimation of dose-response
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functions for certain goods and services that are either untraded or non-tradable,
such as transportation, education, healthcare, real estate, and local services like
restaurants.

For agricultural sectors, I observe a bell-shaped relationship, with an optimal
temperature for productivity around 20°C, consistent with results such as those
of Conte et al. (2021). A key limitation in comparing my results to prior studies
lies however in the use of daily average temperature bins rather than annual ave-
rages, which alters the form of temperature-productivity relationships. For non-
agricultural sectors, I observe positive productivity effects for non-agricultural
sectors on colder days (around and below 0°C). This result might be related
to the differentiated effects identified by Burke et al. (2015), where wealthier
countries—which might be disproportionately represented in trade data for non-
agricultural products—demonstrate a greater capacity to adapt to lower tempe-
ratures. This distinction between rich and poor countries in their responses to
temperature variations could explain the observed resilience of non-agricultural
productivity to colder conditions.

4 Numerical results

1 Model resolution

Given the distribution of labor across markets Lt ≡ {Lk
t (r)}

N,K
r=1,k=0, location-

industry fundamental productivities Zt ≡ {Zk
t (r)}

N,K
r=1,k=0, location-specific fun-

damental amenities at ≡ {at(r)}N
r=1, I define a time-t momentary equilibrium as

a vector of wages wt ≡ {wt(r)}N
r=1 and aggregate price index Pt ≡ {Pt(r)}N

r=1

satisfying equilibrium conditions of the static multi-regional and multi-industry
trade model. Let µ̇t ≡ {µ̇t(rs)}N,N,∞

r=1,s=1,t=1, ȧt ≡ {ȧt}∞
t=1, u̇t ≡ {u̇t}∞

t=1 be migration
shares, amenities, and lifetime utilities changes respectively. Given an initial allo-
cation of labor Lk

0, initial migration flows, initial sectoral trade flows, initial time-
invariant exogenous fundamentals (migration costs, non-weather fundamental
productivities and amenities, local structures), and a path of time-varying exo-
genous fundamentals (amenities, productivities, land uses and climate change),
I define a sequential competitive equilibrium as a sequence of {Lt, µt, ut, wt}∞

t=0

that solves the temporary equilibrium at each time t. Finally, I define a statio-
nary equilibrium as a sequential competitive equilibrium such that the sequence
{Lt, µt, ut, wt}∞

t=0 is constant for every t. The intuition behind this approach is
that observed data (migration flows, wages) are a good proxy for unobserved
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characteristics (migration costs, productivities) and that this observed data pro-
vides sufficient information to bypass the estimation of some fundamentals, for
instance idiosyncratic non-weather regional amenities, to project future decisions
by agents that include the distribution of this unobserved characteristics.

Some more datasets are needed at 1° gridded level for the simulations. I use
2015 GHSL-POP gridded population distribution and population-weighted country-
level estimates of the share of employment in labour from World Bank. Exo-
geneous productivity paths are taken from SSP database and downscaled to 1°
zone for SSP2 based on 2015 population coverage. For productivity paths, I take
the mean of two modelling approaches for SSP2 : OECD Env-Growth and IIASA.
Population projections are taken from KC et al. (2024) SSP2 projections without
migration. I use Conte et al. (2021) gridded sectoral initial bilateral sectoral trade
flows. Agricultural and non-agricultural wages are computed using Kummu et al.
(2018) gridded estimates of GDP per capita and population-weighted country-
level estimates of the labour share of total income from ILOSTAT.

The initial bilateral migration flows are computed from Kummu et al. (2018)
and Abel and Cohen (2019) : the gridded flows are constructed so that they match
international migration flows, and internal migrations are built from within-country
population-weighted net gridded migration stocks. There are two main issues
with the modeling of migrations. First, when migration are fully dynamic, mo-
dels cannot be solved at both global scale and fine resolution, while it would
be useful to keep both characteristics. Applications with fully dynamic decisions
(Caliendo et al., 2019; Balboni, 2019; Rudik et al., 2022) are for a subset of coun-
tries 4. A second issue regarding migration dynamics is data availability at the
right resolution : data is scarce, especially outside the USA. I keep a worldwide
resolution (Cruz and Rossi-Hansberg, 2024) rather than restricting the analysis to
the USA (Caliendo et al., 2019; Bilal and Rossi-Hansberg, 2023) or subset of coun-
tries for which rich migration data are available (Rudik et al., 2022). I reconstruct
gridded migration flows from both international migration flows and gridded net
migration stocks in a simplistic way that probably underestimate them but this
first-order and fully explicit approximation relies on best-available gridded data
products (Kummu et al., 2018; Abel and Cohen, 2019) and can be checked for ro-
bustness. Another avenue would be to invert the model to recover fundamentals
such as migration costs, but it is also based on important modelling assumptions
regarding the estimation of regional fundamental amenities.

4. Recent advances include using deep neural networks (Azinovic et al., 2022) or perturbation
approaches (Bilal and Rossi-Hansberg, 2023) could allow to keep both fully dynamic decisions
and global 1° gridded approach. I leave work on these methodologies for future research.
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2 Counterfactual climates and policies

To evaluate the aggregate welfare consequences of global warming and the
welfare consequences of the biophysical channels, I compare at the gobal scale the
present discounted value of regional utilities that are not idiosyncratic, namely,

W0 = ∑
r∈N

∞

∑
t=0

βtu̇t+1(r) = ∑
r∈N

∞

∑
t=0

βt ȧt+1(r)ẏt+1(r) (4.16)

In my approach, as in Cruz and Rossi-Hansberg (2024), I thus focus on changes
in how individuals value the amenity and production characteristics of a location
under changing climate. A drawback of this choice, discussed in Desmet et al.
(2018a), is that the welfare cost computed does not include two components : the
mobility costs incurred to get there and the idiosyncratic preferences of indivi-
duals who live there.

I simulate the model in three alternative settings.
Simulation 1 - without climate change In this benchmark simulation, I com-

pute the distribution of future sectoral economic activities, population and trade
flows that clear markets in each location at all future periods under the assump-
tion that there is no climate change, i.e. no deviation in the annual distribution of
daily mean temperatures in each location.

Simulation 2 - under biogeochemical SSP2-4.5 In the second simulation, I
use bias-adjusted (Lange, 2019) and down-scaled projections from five CMIP6
Earth System Models forced with SSP2-RCP4.5 emissions under the assumption
of fixed 2015 land use : GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-
ESM2-0. More specifically, I construct a synthetic annual distribution of daily
mean temperatures for each 1° location taking the average over five years. Thus,
I can have a better proxy of the underlying climate distribution from which wea-
ther from a given year is drawn and capture some internal variability in climate,
for instance due to El Niño. I compute the distribution of future sectoral econo-
mic activities, population and trade flows that clear markets in each location at
all future periods under these nonlinear deformations in the annual distributions
of daily mean temperatures in each location. The deviation between this simula-
tion and the first one allows to compute the aggregate and distributional welfare
impact of exogenous biogeochemical change along SSP2-4.5.

Simulation 3 - under both biogeochemical and biophysical SSP2-4.5 In the
third simulation, I add the biophysical impacts driven by urban and agricultural
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land demands to the exogenous biogeochemical projections, using the mapping
between LULC changes and biophysical impacts that applies in this specific 1°
Koppen Geiger climate zone at a given time period. The distribution of daily
mean temperature in year t is the sum of exogeneous SSP2-4.5 scenarii and bio-
physical channels over each month within a year (net transitions to croplands)
and over a year (transitions to urban areas). The comparison between this simu-
lation and the second one allows to compute the aggregate and distributional
welfare consequences of biophysical channels.

3 Benchmark biogeochemical climate impacts (SSP2-4.5)

First, I plot on the left graph of Figure (4.5) the 2100 future climate under SSP2-
4.5 with respect to the 2015 distribution of temperatures, treating each location
as a unit. The distortion of annual daily mean temperature distributions is less
pronounced than in SSP5-8.5 or equivalent carbo-intensive pathways previously
assessed (Cruz, 2021; Krusell and Smith Jr, 2022). Indeed, annual average tem-
perature increases only from 15°C in 2015 to 17.3°C in 2100, i.e. a 2.3°C increase
in mean annual surface temperature over our gridded locations of interest. On
the right graph on Figure (4.5), I compare two shifts in the global intra-annual
distribution of daily mean temperatures between 2015 and 2100. In red, I plot the
difference in the frequency of a given mean daily temperature in the annual dis-
tribution using actual climate projections, i.e. I show how more frequent a given
temperature is on average at the annual scale and over all locations in 2100 cli-
mate in comparison with 2015 initial climate conditions. In green, I apply a shape-
preserving shift in annual mean to the 2015 distribution in blue on the left graph :
I add to each mean temperature bin in 2015 the mean global annual difference
between 2015 and 2100 in climate projections. This shift is approximate and illus-
trative as I round this shift again to match it to climate projections. These graphs
show that even when aggregated to the global level, there are large changes in
the shape of the intra-annual distribution of daily mean temperatures that are
not perfectly summarized by the annual mean deviation. This non-linearity is ac-
counted for in our approach where we use the whole distribution of daily mean
temperature to estimate climate impacts from the equilibrium conditions of the
model and simulate their welfare consequences along our scenario.

175



0

5

10

15

20

25

-60 -30 0 30 60
Temperature bin (1°C)

F
re

qu
en

cy
 (

nu
m

be
r 

of
 d

ay
s)

Synthetic climate 2015 2100

-15

-10

-5

0

5

-60 -30 0 30 60
Temperature bin (1°C)

D
iff

er
en

ce
 in

 fr
eq

ue
nc

y 
(n

um
be

r 
of

 d
ay

s)

Climate shift Projections Shape-preserving 
 mean shift

FIGURE 4.5 – Left Synthetic global annual distributions of daily mean temperatures in
2015 (in blue) and 2100 (in red), under SSP2-4.5, for all gridded locations studied in the
paper. Right Shifts from 2015 to 2100 in the frequency of daily mean temperatures per
temperature bin (in number of days) for climate projections (in red) and for a synthetic
shape-preserving approximate annual mean shift.

In the approximate climate shift, the annual mean increase observed between the two distribu-
tions 2015 and 2100 is added to each bin of the 2015 distribution. Dotted lines represent average
annual mean surface temperature. I treat each location as one unit.

I analyze both the aggregate and distributional welfare effects of climate change
under the SSP2-4.5 scenario, focusing on locations where data is available (e.g.
Libya is excluded due to missing data) and where population and economic ac-
tivity were present in 2015. Thus, my analysis centers on the intensive margin of
adaptation, considering only existing areas and not the extensive margin—such
as migration to currently uninhabited regions or the emergence of economic acti-
vity in areas with none in 2015. As there is no data on population and economic
flows to reliably calibrate such predictions for these areas, I believe projections
on this extensive margin would require a level of external model validity that
is hard to achieve. In Figure 4.7, I present the distribution of changes in ameni-
ties and sectoral productivities across 12,674 gridded locations, using estimated
dose-response functions.
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FIGURE 4.6 – Ratio of amenity (left), agricultural productivity (middle), non-agricultural
productivity (right) changes between scenario 2 with SSP2-4.5 forced with biogeochemi-
cal anthropogenic impacts and scenario 1 without climate change.

For sectoral productivities, I winsorize the top of the distribution at 1.5 for illustration.

This graph yields three main conclusions. First, the average impact of climate
change is negative for amenities and sectoral productivities. As in Cruz (2021)
and as suggested by our dose-response functions, the marginal impact on ame-
nity is one order of magnitude below the marginal nonlinear impact of tempe-
ratures on sectoral productivities. Indeed, mean amenity changes are 5% with
respect to baseline, while mean sectoral productivy changes are as large as 28%
and 48% for agricultural and non-agricultural productivities. Second, in compa-
rison with previous estimates yielding benefits from climate change for amenities
and sectoral productivities in many locations, the impacts of climate change are
negative for almost all locations when the entire intra-annual temperature dis-
tribution is considered. Even if some moderate daily mean temperatures have
positive impacts on these variables in our dose-response functions, the aggregate
effect is negative. Third, the impacts for sectoral productivities are much more
dispersed than the impacts of climate change on amenities : most of the spatial
heterogeneity will therefore come from these channels. I then study how these
changes in sectoral amenities and productivities translate into welfare impacts,
once the adaptation of agents is taken into account. In Figure (4.7), I plot the dis-
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tribution of changes in welfare in scenario 2 with biogeochemical climate change
with respect to baseline scenario 1 without climate change.
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FIGURE 4.7 – Ratio of welfare changes between scenario 2 with SSP2-4.5 climate impacts
and counterfactual scenario 1 without climate change, plotted on a map (left) and on an
histogram (right).

On the map, transitions between gridded locations are smoothed. The dotted red line represents
the avarage effect across locations.

Figure (4.7) highlights two key findings. First, the mean welfare change under
the SSP2-4.5 scenario is negative, with a 0.7% decline in welfare, equivalent to
the 0.7% decrease estimated by Cruz (2021) for RCP6.0, despite RCP6.0 being a
more carbon-intensive pathway. Second, with few exceptions driven by specific
regional climates, such as the southern Arabian Peninsula, the marginal impact
of climate change under SSP2-4.5 is negative across most regions. Contrary to
previous estimates, I find no evidence of marginal benefits from climate change
in northern locations. Since my analysis incorporates the intra-annual distribu-
tion of daily mean temperatures interacted with non-linear dose-response func-
tions based on these distributions, the resulting welfare changes do not follow a
simple isomorphic relationship to annual time-invariant temperature scalers that
mimic polar amplification. The changes in annual temperature distributions are
more complex than a uniform shift in the mean. These non-linear warming pat-
terns, when combined with the non-linear response of welfare to temperature
variations within the year, result in non-linear welfare impacts.
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4 Counterfactual exogenous biophysical impacts (SSP2-4.5)

Building on the baseline estimates that include the biogeochemical impacts
of climate change, I now assess the relative contribution of biophysical channels
through LULC changes—the effects of albedo, evapotranspiration, and surface
roughness. Figure 4.8 illustrates the distribution of welfare changes in scenario
3, which incorporates biophysical channels, relative to scenario 2, where only cli-
mate change impacts from the carbon cycle are considered without biophysical
effects. These welfare changes are expressed as a fraction of the total change bet-
ween scenarios 2 and 1, reflecting the standard climate impact estimates under
SSP2-4.5, excluding biophysical channels. Thus, the estimates give the share the
biophysical impacts represent in the standard biogeochemical estimates of the
welfare impacts of climate change along SSP2-4.5.

-50

0

50

La
tit

ud
e

-100 0 100
Longitude

0 10 20
Welfare 
 changes (in %)

Average = 2.441 

Std Deviation = 3.419

0.00

0.05

0.10

0.15

-10 0 10 20
Share of biogeochemical welfare changes (in %)

F
re

qu
en

cy

FIGURE 4.8 – Share of welfare changes (in %) between scenario 3 with both SSP2-4.5 bio-
geochemical and biophysical channels and counterfactual scenario 2 without biophysical
channels in the change between scenario 1 and scenario 2, plotted on a map (left) and on
an histogram (right).

On the map, transitions between gridded locations are smoothed. The distribution are 98% win-
sorized for illustration. The dotted red line represents the average welfare change.

Figure (4.8) provides two key insights. First, biophysical channels account
for a non-negligible portion of the welfare impacts of climate change typically
estimated from biogeochemical factors under SSP2-4.5, i.e. when temperature
downscaling is assumed to be linear, time-invariant and exogenous to regional
economic activities. Specifically, these regional biophysical processes, driven by
LULC changes, contribute approximately 2.4% to the overall welfare impacts cur-
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rently attributed to climate change. Regional economic activity does shape regio-
nal climate impacts. Second, the effects of these biophysical channels are predo-
minantly negative across most regions.

Once I have retrieved the aggregate welfare impact of the biophysical chan-
nels, I estimate their distributional impacts with respect to standard biogeoche-
mical climate impacts. In Figure (4.9), I plot the distribution of welfare impacts
under biogeochemical impacts (left), under both biogeochemical and biophysical
impacts (middle) , the distribution of the share of biophysical welfare impacts
with respect to standard biogeochemical impacts (right) against the log of 2015
GDP per capita (ppp USD).
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FIGURE 4.9 – Distributional impacts of biogeochemical and biophysical channels along
SSP2-4.5 Left Biogeochemical only with respect to no climate change (scenario 2 and sce-
nario 1) Middle Both biogeochemical and biophysical impacts with respect to no climate
change (scenario 3 and scenario 1). Right Deviation between scenario 2 and scenario 3
(scenario 3 and scenario 2).

The red lines represent correlation, fitted using a linear regression model.

Figure (4.9) shows that the biogeochemical climate impacts are regressive, af-
fecting more the poorest 2015 location. Indeed, a simple linear regression suggests
that a 1% increase in GDP per capita yields a 0.1% decrease in welfare change
with respect to the baseline simulation without climate impacts. Biophysical im-
pacts further exacerbate the regressivity of biogeochemical impacts, by a 0.001%
decrease in marginal welfare impacts for a 1% increase in 2015 GDP per capita.
Thus, biophysical channels imply a 1% increase in the slope of the regressivity of
standard biogeochemical climate impacts.
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5 Discussion

As our understanding of the mechanisms through which human activities
and climate impacts interact goes further, I investigate a mechanism qualitati-
vely distinct from the traditional biogeochemical one : the biophysical channel
by which LULC changes bring regional climate impacts because of changes in
albedo, evapotranspiration and soil roughness. While this mechanism might be
negligible at a global scale in the first-order computation of the impacts of cli-
mate change, it does have heterogeneous regional effects that should be scruti-
nized carefully because they can cascade into large aggregate welfare effects and
distributional consequences. In this paper, I quantify how and how much the
regional biophysical channel of climate impacts driven by land use land cover
changes matter. I first build a reduced-form representation of the regional bio-
physical feedbacks. Then, I leverage a dynamic quantitative spatial economic mo-
del applied to climate change with an explicit modelling of adaptation through
trade, migration and changes in sectoral specialization. Furthermore, I estimate
model-consistent dose-response functions of regional amenities and sectoral pro-
ductivities to changes in the annual distribution of daily mean temperatures. Fi-
nally, I take the theoretical setting to the data at 1° gridded global scale. I solve
the model with dynamic exact hat algebra and compare a baseline with forward-
looking agents under ‘middle-of-the-road’ SSP2-4.5 without regional biophysi-
cal feedback to the counterfactuals with regional LULC changes and biophysical
feedbacks. I compute the distributional and aggregate welfare impact for bench-
mark model and under counterfactual climates regarding LULC.

In conclusion, my analysis demonstrates that regional economic activity plays
a significant role in shaping regional climate impacts. By incorporating biophysi-
cal channels into the assessment of SSP2-4.5, I find that these channels account for
an additional 2.5% of the biogeochemical impacts on welfare, on average. The ef-
fects are unevenly distributed, influenced by both socioeconomic factors—such
as urban land-use changes and transitions from shrublands or forests to cro-
plands—and by shifting climate zones. Notably, the impacts of biophysical chan-
nels are predominantly negative across regions and, like biogeochemical effects,
are regressive, disproportionately affecting lower-income regions based on 2015
income levels. In both scenarii of future climate impacts, interacting intra-annual
warming patterns with non-linear damage functions from temperature bins im-
plies that nearly all regions will suffer from the impacts of climate change, with
no significant benefits expected in the Northern Hemisphere.
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A future direction, which is already underway for this paper, is to endoge-
nize marginal deviations from SSP2-4.5 in land-use change. I use the exogenous
MESSAGE-Globiom scenario SSP2-4.5 as a first approximation. But around this
benchmark SSP2-4.5 from which I calibrate productivity and population exoge-
nous paths, climate impacts and endogenous adaptation decisions (migration,
sectoral specialization and trade) drive marginal changes in LULC changes in
comparison with the standard MESSAGE-Globiom scenario. I could map margi-
nal changes in the model input stemming from endogenous adaptation decisions
in my quantitative spatial model to changes in model output around this scenario
with a flexible statistical relationship, e.g. a surrogate model with gaussian pro-
cesses (GP) to emulate the more complex land-use model. Alternative avenues
could be taken, each with its limits. First, I could use reduced-form econometrics
on historical data, but there is no exogenous variation to leverage, be it an instru-
ment or a quasi-experimental setting. Panel fixed effect approaches (Chen et al.,
2020) are affected by endogeneity and simultaneity as the authors have no control
over the data-generating process. Second, I could build a complete dynamic mo-
del of land use changes including a market for crops, for land prices, etc., as well
as assumptions about agricultural and urban policies. But the dynamic relation
in the competition for land use would be computationally demanding and hard
to calibrate at the global 1° gridded scale. This GP approach might be adapted
for four main reasons. First, it allows me to map marginal deviations around an
established exogenous scenario SSP2-4.5 building on robust land-use models. Se-
cond, I have control over the data-generating process, both exogenous scenario
for drivers and mechanistic relations between variables of interest. Third, the GP
is flexible : it is a non-parametric regression tool where I do not define a specific
functional form to the input-output mapping ex-ante and I can handle non-linear
relations. Fourth, GP allows uncertainty quantification as they are probability dis-
tribution over a function space.

There are other limits to my approach. First, I should include other impacts,
as LULC changes have large impacts on other planetary limits, for instance biodi-
versity. Second, I could estimate counterfactual policies to reduce the welfare cost
of these biophysical channels, for instance zero net land take or irrigation policies
(Braun and Schlenker, 2023). Finally, I would like to explore further impacts, for
instance precipitation (Devaraju et al., 2015; Smith et al., 2023) and its interaction
with temperature changes (e.g. wet bulbs). Water cycle indeed raises concerns not
only because of deforestation (Grosset et al., 2023), but also following urbaniza-
tion (Sui et al., 2024). These investigations are left for further research.
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6 Appendix

1 Migration in hat algebra

I write the change in bilateral migration flows in dynamic exact hat algebra.
Starting from the initial equation for bilateral migration flows, I write the equa-
tion in time differences :

µ̇r,s,t+1 =

ut+1(s)1/Ωm(s)−1/Ω

∑n∈N ut+1(n)1/Ωm(n)−1/Ω

ut(s)1/Ωm(s)−1/Ω

∑n∈N ut(n)1/Ωm(n)−1/Ω

(4.17)

Then, as migration costs are assumed to be time-invariant :

µ̇r,s,t+1 =
u̇t+1(s)1/Ω

∑n∈N ut+1(n)1/Ωm(n)−1/Ω

∑n∈N ut(n)1/Ωm(n)−1/Ω

(4.18)

I have that :

µ̇r,s,t+1 =
u̇t+1(s)1/Ω

∑n∈N ut+1(n)1/Ωm(n)−1/Ω ut(n)1/Ωm(n)−1/Ω

ut(n)1/Ωm(n)−1/Ω

∑n∈N ut(n)1/Ωm(n)−1/Ω

(4.19)

This yields the equation of interest.

2 Profit maximization

Profit in sector k (i.e. good i), location r, writes (symmetry between varieties
ω) :

Πk
t (r) = pk

t (r)z
k
t (r)Lk

t (r)
µk

Hk
t (r)

1−µk − wt(r)Lk
t (r)− Rk

t (r)Hk
t (r) (4.20)

First-order conditions of profit maximization problem write :

∂Πk
t (r)

∂Lk
t (r)

= 0 (4.21)

∂Πk
t (r)

∂Hk
t (r)

= 0 (4.22)

Thus :
µk pk

t (r)z
k
t (r)Lk

t (r)
µk−1Hk

t (r)
1−µk − wt(r) = 0 (4.23)
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(1 − µk)pk
t (r)z

k
t (r)Lk

t (r)
µk

Hk
t (r)

−µk − Rk
t (r) = 0 (4.24)

Replacing pk
t (r) yields :

Rk
t (r)Hk

t =
1 − µk

µk wt(r)Lk
t (4.25)

3 Prices and bilateral trade flows in exact hat algebra

Starting from the definition of prices (4.7), I write :

Ṗk
n,t+1 =

 N

∑
l=1

Zk
l,t+1[x

k
l,t+1τk

nl,t+1]
−θk

∑N
m=1 Zk

m,t[x
k
m,tτ

k
nm,t]

−θk

−1/θk

(4.26)

Multiplying and dividing each element in the summation just as what I have
done for migration :

Ṗk
n,t+1 =

 N

∑
l=1

Zk
l,t+1[x

k
l,t+1τk

nl,t+1]
−θk Zk

l,t[x
k
l,tτ

k
nl,t]

−θk

Zk
l,t[x

k
l,tτ

k
nl,t]

−θk

∑N
m=1 Zk

m,t[x
k
m,tτ

k
nm,t]

−θk


−1/θk

(4.27)

Using trade flows from equation (4.10), I have the equation of interest (as trade
costs are time invariant). Similarly for trade flows, I multiply and divide the nu-

merator of (4.10) by Zk
it
(
xk

itτ
k
nit
)−Θk

and do the same for each element of the sum-
mation of the denominator :

λk
nit+1 =

Zk
it+1

(
xk

it+1τk
nit+1

)−Θk Zk
it(xk

itτ
k
nit)

−Θk

Zk
it(xk

itτ
k
nit)

−Θk

∑l Zk
lt+1

(
xk

lt+1τk
nlt+1

)−Θk Zk
lt(xk

ltτ
k
nlt)

−Θk

Zk
lt(xk

ltτ
k
nlt)

−Θk

(4.28)

Which yields :

λk
nit+1 =

Żk
it+1

(
ẋk

it+1
)−Θk

Zk
it
(
xk

itτ
k
nit
)−Θk

∑l Żk
lt+1

(
ẋk

lt+1

)−Θk

Zk
lt

(
xk

ltτ
k
nlt

)−Θk
(4.29)
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Then, dividing by the sum :

λ̇k
nit+1 =

Żk
it+1

(
ẋk

it+1
)−Θk

∑l λk
nltŻ

k
lt+1

(
ẋk

lt+1

)−Θk (4.30)

4 Welfare

We study :

W0 = ∑
r∈N

∞

∑
t=0

βtu̇t+1(r) = ∑
r∈N

∞

∑
t=0

βt ȧt+1(r)ẏt+1(r) (4.31)

We have the equation for amenity changes. Changes in real income write :

ẏt+1(r) =

(
∑K

k=1(Lk
t+1(r)/Lt+1(r))wk

t+1(r)
)

(
Πk∈K Ṗk

t (r)χk
) (

∑K
k=1(Lk

t (r)/Lt(r))wk
t (r)

) (4.32)

5 Dose-response functions

At equilibrium :

µr,s,t

µr,r,t
=

ut(s)1/Ωm(r, s)−1/Ω

ut(r)1/Ωm(r, r)−1/Ω =
(at(s)yt(s))

1/Ω m(r, s)−1/Ω

(at(r)yt(r))
1/Ω m(r, r)−1/Ω

(4.33)

Which yields :

log
(

µr,s,t
µr,r,t

)
= − λ

Ω log
(

Lt(s)
Lt(r)

)
+ 1

Ω log
(

āt−1(s)
āt−1(r)

)
+ 1

Ω log(m(r, s)) + 1
Ω log yt(s)

yt(r)
+ 1

Ω ( f (Ts,t, ζa)− f (Tr,t, ζa)) (4.34)

6 Migration data

The key gap in our simulations is the matrix of intersectoral bilateral migra-
tion flows. First of all, I do no have data on sectoral migration at this grid level
and at the global scale : I thus focus on bilateral migration flows without sector-
specific mobility. Then, I combine a dataset Minter

c1,c2 of 5-years international bilate-
ral migration flows between c1 (out) and c2 (in) for each pair of N countries from
2010 to 2015 (Abel and Cohen, 2019) with gridded data of net migration stocks
from 2010 to 2015 Mintra

z for each 1° gridded zone z from Kummu et al. (2018).
The procedure, detailed in annex, has two steps. First, I compute the probability
of international inflows and outflows for each zone times country based on net
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migration stocks and assign international migration flows based on these pro-
babilities. Then, once international migration flows are deducted from net grid-
ded migration stocks for each zone*country, I compute within-country migration
flows between each region zone*country based on probability of intra-migration
flows given gridded net migration stocks net of inter-country migration flows. I
then aggregate the flow at 1° zone level. My procedure probably underestimates
migration flows (i.e. overestimates migration costs) but I unfortunately do not
have gridded births and deaths data to reconstruct migration flows à la Abel and
Cohen (2019). For robustness, I run simulations with lower migration costs.

— Compute the share sz,c,L2010 of each 1° zone z that is in country c based on
2010 population at level 0.1°. Compute the net migration stock Mintra

z,c =

sz,c,L2010 ∗ Mintra
z of each pair (c,z) based on these population weights

— Normalize net migration stock at country c level for inflows
M̄in f lows

z,c = Mintra
z,c + minc(Mintra

z,c )

which yields a probability of international inflows for each (c,z)
Pin f lows

z,c = M̄in f lows
z,c /sumc(M̄in f lows

z,c )

— Normalize net migration stock at country c level for outflows, i.e. :

M̄out f lows
z,c = −

(
Mintra

z,c − maxc(Mintra
z,c )

)
(4.35)

, which yields a probability of international outflows for each (c,z) :

Pout f lows
z,c = M̄out f lows

z,c /sumc(M̄out f lows
z,c ) (4.36)

— Assign bilateral international migration flows (in and out) for each country
c to each zone z based on these probabilities to obtain (1) MBz1,z2 the 1° bi-
lateral matrix of international migration flows and (2) Mintra−net

z,c , i.e. stock
of migration flows at gridded-country level net of international migration
flows.

— For each zone z1 in c :

1. If stock in z1 is positive, compute the probability of receiving internal
flows from all other z2. Normalize net migration stock at country c le-
vel for inflows for all z2, i.e. M̄in f lows,net

z2,c = Mintra,net
z2,c + minc(Mintra,net

z2,c ),

which yields a probability of internal inflows for each (c,z1,z2), Pin f lows,net
z2,c =

M̄in f lows,net
z2,c /sumc−z1(M̄in f lows,net

z2,c )

2. If stock in z1 is negative, compute the probability of sending internal
flows to all other z2. Normalize net migration stock at country c level
for inflows for all z2, i.e. M̄in f lows,net

z2,c = −(Mintra,net
z2,c − maxc(Mintra,net

z2,c ),
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which yields a probability of internal inflows for each (c,z1,z2), Pout f lows,net
z2,c =

M̄out f lows,net
z2,c /sumc−z1(M̄out f lows,net

z2,c )

— Add these internal flows to our matrix MBz1,z2.

7 Algorithm

Algorithm. Solve period by period the sequential competitive equilibrium
given an initial allocation (Lk

0, wk
0, µi,n,0, λi,n,0) and an anticipated convergent se-

quence of changes in fundamentals, {Θ̇t}∞
t=0 (regional productivities and ame-

nities affected by exogeneous biogeochemical climate impacts). without changes
in LULC and biophysical channel. From this baseline scenario, I compute dis-
tributional and aggregate welfare impact of climate change along SSP2-4.5. The
counterfactual [without climate change] is the same algorithm but with no cli-
mate impacts.

— Scenario 1 : without climate impacts. In this baseline scenario, I compute
the distribution of people and activity without future climate impacts.

— Scenario 2 : with SSP2-4.5 climate impacts, without biophysical impacts. In
this first counterfactual, I compute the distribution of people and activity
and the aggregate and distributional welfare impacts of exogenous SSP2-
4.5 without land use changes.

— Scenario 3 : with SSP2-4.5 climate impacts and exogenous biophysical im-
pacts. In this second counterfactual, I compute the distribution of people
and activity and the aggregate and distributional welfare impacts of exoge-
nous SSP2-4.5 with exogenous land use changes from MESSAGE-Globiom
model.
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Algorithm 1 Resolution
Inner loop solves the static equilibrium at each time period t. Outer loop computes path for fun-
damental variables given market clearing at each time t in each location r.

— Make an initial convergent (to 1 when T large) guess for the path of expected lifetime
utilities expressed in time differences {u̇0

r,t}
T,N
t=0,r=1, where the superscript (0) indicates a

guess. ;

— While [outer loop] convergence criteria not met (tolerance, nb of loops)

1. For all t, use {u̇(0)
r,t }

T,N
t=0,r=1 and {µr,n,0}N,N

r=1,n=1 to solve for the path of

{µr,n,t}T,N,N
t=0,r=1,n=1.

2. For all t, use equation for population dynamics, {µr,n,t}T,N,N
t=0,r=1,n=1,{Lk

r,0}
T,N,K
r=1,k=1 and

SSP2 exogenous birth & death rates scenarii to get {Lk
r,t}

T,N,K
t=0,r=1,k=1

3. Select climate scenario and recover the path of regional productivity and amenity
changes in each r {Żk

t (r)}
T,N,K
t=0,r=1,k=1, {ȧt(r)}T,N

t=0,r=1 from the scenario using estimated
dose-response functions and exogenous productivity growth rates.

4. For [inner loop] each period t > 0
— Define a guess for wages {ẇ(0)

r,t+1}
T,N
t=0,r=1

— Obtain {ẋk
r,t+1}

N,K
r=1,k=1 using {Lk

t (r)}
N,K
r=1,k=1 and guess for {ẇr,t+1}N

r=1.

— Use {ẋk
r,t+1}

N,K
r=1,k=1, {Żk

t (r)}
N,K
r=1,k=1 and {λk

rn,t}
N,N,K
r=1,n=1,k=1 to obtain {Ṗk

r,t+1}
N,K
r=1,k=1

— Obtain {λk
rn,t+1}

N,N,K
r=1,n=1,k=1 from {Ṗk

r,t+1}
N,K
r=1,k=1, {Żk

t (r)}
N,K
r=1,k=1, {ẋk

r,t+1}
N,K
r=1,k=1

and {λk
rn,t}

N,N,K
r=1,n=1,k=1

— Compute {ẇr,t+1}N
r=1 and check if market clears in each location

— Update {ẇ(0)
r,t+1}N

r=1 if market does not clear
— If market clears at t, compute aggregate price index {Ṗr,t+1}N

r=1 using fixed share
of each good in worker’s expenditure

5. Repeat for each t to obtain at each period the momentary equilibrium and recover full
paths of {ẇn,t+1}T

t=0 and {Ṗr,t+1}T,N
t=0,r=1, which gives change in worker’s real income.

— For each t, compute {u̇t+1(r)}T,N
t=0,r=1 and change in worker’s real income using

{ẇr,t+1}T,N
t=0,r=1 and {Ṗr,t+1}T,N

t=0,r=1. Check if {u̇t+1(r)}T,N
t=0,r=1 ≈ {u̇(0)

t+1(r)}
T,N
t=0,r=1 accor-

ding to convergence criterion. If not, go back to first step and update initial outer guess.
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Conclusion

An economic analysis of climate change operates at the intersection of four
key dimensions central to the issue : time, space, stochastic risk, and scientific un-
certainty. The interplay among these dimensions gives rise to two complementary
questions, one normative and the other positive.

How do the uncertainties arising from these four dimensions affect optimal
social choice at the Earth-Human interface? These uncertainties, in my view, ne-
cessitate pursuing two interconnected but distinct agendas. First, we should im-
prove the modelling of the spatio-temporal spectrum of possible futures given
stochastic risk and scientific uncertainty about these possible futures. In other
words, we should inform decisions with the best information available. Second,
we should adopt social choice criteria that enable optimal judgments of these si-
tuations, ensuring citizens have flexible decision-making frameworks that accom-
modate diverse preference parameters across the four dimensions discussed. We
can then separate our knowledge of possible futures from our attitude towards
these various possible futures. Our understanding of potential futures should in-
form the development of appropriate social choice frameworks. When scientific
uncertainty is the predominant issue, greater flexibility in decision-making in this
dimension is necessary. When spatial heterogeneity is the key concern, inequality
aversion may become more relevant. If the primary challenge lies in large ag-
gregate risk from irreversible catastrophic events, social choice criteria should be
adaptable enough to incorporate aversion to such risks.

In Chapter 1, we explore the validity conditions of expected utility in the pre-
sence of tipping point risk, where the aggregate risk on intertemporal utility is
very high. This aggregate risk is high because of a particular characteristic of
these catastrophic events compared to more standard extreme events such as na-
tural disasters : their irreversible nature, at least on scales that are relevant for
economic policy. Accordingly, we adjust our risk modeling approach, opting for
a framework based on irreversible regime shift risk—characterized by transitions
from one qualitative state to another—rather than volatility or reversible risks ty-
pically modeled along smooth macroeconomic trends. If the tipping threshold is
crossed, the well-being of all future generations is low and positively correlated.
In traditional expected utility models, planners exhibit neutrality toward aggre-
gate risk. Hence, we explore alternative approaches that provide decision-makers
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and the public with greater flexibility when confronting irreversible risks. Our
conclusions, however, remain nuanced, as they depend on the estimated magni-
tude of the risk. As mentioned earlier, the process of modeling possible futures
is inseparable from the task of collectively determining our stance toward them.
If catastrophic risk is very important and has mutliplier effects, then it may be
wise to turn to a social choice criterion that places more weight on situations in
the world where intertemporal welfare is low. Otherwise, it may be preferable
to stick with expected utility, given the good normative properties of this func-
tional form. Throughout this analysis, as well as in Chapter 2, we ensured the
modeling of genuine stochastic risk. Our framework enables the social planner
to explore the entire tree of possible outcomes and the full spectrum of poten-
tial futures. This has significant computational implications, as we employ global
solution methods rather than relying on deterministic approaches or averaging
deterministic outcomes.

In Chapter 2, we extend both approaches : offering a more comprehensive
representation of possible futures and refining the social choice criterion to in-
corporate greater flexibility in addressing aversion to scientific uncertainty. Our
aim was to depict tipping point risks more precisely, using calibrated dynamics
in which potential catastrophes emerge as properties of the dynamic system, ra-
ther than as stylized phenomena with arbitrary probabilities defined ex ante. Ana-
lytically, we delve deeper into the interactions between various types of risks
over time. Specifically, we examine the relationship between standard aggregate
climate risks—such as the transient climate response to cumulative emissions,
which involves uncertainty in how carbon emissions drive temperature changes
and their subsequent economic impacts—and subsystem idiosyncratic risks, which
affect the dynamics of the system itself. Additionally, we account for scientific
uncertainty, a crucial factor that permeates the analysis of these subsystems, as
highlighted by the IPCC’s use of confidence and probability scales, and the on-
going debates within climate science over tipping risks. In particular, we model
two distinct forms of uncertainty : uncertainty about the relationship between
global climate change and the dynamics of the subsystem, and uncertainty regar-
ding the functional form of these dynamic subsystem. More scientific uncertainty
could be explored, particularly if they interact with uncertainty about the dyna-
mics of the subsystems of interest.

How do the uncertainties stemming from the four dimensions outlined
above—time, space, risk, and scientific uncertainty—influence our estimations
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of future climate impacts at the Earth-human interface? Recent advances in cli-
mate economics have been less focused on time (e.g., refining our understan-
ding of the dynamic economic impacts of climate change or extending analyses
to long-term horizons like the millennium scale), risk (e.g., better comprehending
the non-linear responses of societies to climate impacts), or scientific uncertainty
(e.g., predicting its likely trajectory with a learning framework). The most signi-
ficant developments have been in the spatial dimension. As the literature increa-
singly works at finer spatial scales, driven by the rapid growth in the availability
of gridded data for decision-making, it is crucial to assess the implications for our
existing methods and approximations, especially along two aspects. First, what
holds true at the global scale may not apply at local or regional levels. Second, we
must consider how advancements in one dimension impact our understanding
of other dimensions in addressing climate challenges.

In Chapter 3, we demonstrate that due to the non-linear nature of climate-
society relationships, regional dynamics play a critical role in climate impact pro-
jections : temporal and spatial aggregations alter the picture of welfare impacts
and the risk ranking across climate models. These differences are driven by re-
gional heterogeneity in both damage and warming patterns. Spatial disaggrega-
tion reveals how uncertainties in climate models regarding the full distribution
of future weather outcomes cascade down to regional damage estimates. Fur-
thermore, instead of extending the time horizon, we focus on how current an-
nual temporal aggregation may distort climate impact projections. By using the
full annual distribution of daily mean temperatures, we capture intra-annual va-
riations in temperature patterns, avoiding reliance on arbitrary summary statis-
tics of the high-dimensional climate vector, e.g. annual mean or number of days
above a threshold. We could take this further by disaggregating the temporal di-
mension further, considering daytime and nighttime temperatures separately, to
better capture phenomena like heatwave days.

In Chapter 4, I incorporate the regional biophysical impacts of land-use changes
within a quantitative spatial model under the SSP2-4.5 scenario. These impacts
arise from changes in albedo, evapotranspiration, and surface roughness, trigge-
red by shifts from and to croplands and urbanization changes. Other biophysi-
cal impacts and land-use transitions could also be considered. I emphasize the
importance of accounting for interactions between regional economic activities,
global and regional physical changes, and their local impacts. These impacts also
have spillover effects because people migrate, because of changes in relative prices,
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sectoral specialization and trade patterns. It is crucial to address not only exoge-
nous uncertainties when downscaling global climate change to local impacts, but
also how local decisions influence these processes endogenously. Local land-use
choices significantly shape future climate impacts and may undermine the ex-
pected benefits of adaptation measures. Many uncertainties beyond the primary
effects of global emissions remain understudied. Although secondary in aggre-
gate terms, these mechanisms can have important distributional consequences at
the regional level and more precise qualitative effects on the models. Focusing
solely on high-end scenarios like SSP5-8.5 restricts our ability to examine these
more intricate dynamics.

This thesis enables me to offer some modest public policy recommendations.
First, not all climate risks are equal. Risks with multiplier effects and irrever-

sible consequences should be addressed with greater urgency, warranting sub-
stantial emission reductions today. A similar conclusion could be drawn for re-
peated but reversible events that lead to irreversible damage over time. Howe-
ver, the potential non-linear interactions between human systems and repeated
climate events remain underexplored — both in the damage function estimates
within the econometrics literature and in theoretical models, where impacts are
typically assumed to be additive.

Second, I propose policies for managing large climate subsystems, such as the
Amazon rainforest. I recommend measuring the impact of carbon emissions on
the dynamics of these subsystems to more equitably allocate responsibility for
future changes in their behavior. This approach could also help raise funds to
support Coasian incentive mechanisms for optimal management of these sub-
systems at the regional level. Moreover, considering the system’s dynamics as a
whole can enhance regional management, such as in cost-benefit analyses of de-
forestation in tropical forests, by factoring in the impact of marginal changes on
the subsystem’s long-term self-sustainability. While these mechanisms constitute
a small part of the social cost of carbon, they represent significant amounts when
applied to the global taxation of all GHG emissions.

Third, I advocate for regional decision-making that is more informed about
climate uncertainty, particularly when downscaling global climate change to lo-
cal impacts. Adaptation plans at finer scales, from national to local levels, should
be designed to withstand the full distribution of possible futures, rather than fo-
cusing on an average scenario. The average scenario obscures significant uncer-
tainties, which not only persist but often intensify at smaller scales. Crucially, it
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also fails to account for the various sources of uncertainty. The quantifiable va-
riance in regional climate impact projections is influenced by scenario uncertainty
(differences in Shared Socioeconomic Pathways, SSPs), model uncertainty (varia-
tions in Earth System Models’ responses to SSPs), internal variability (due to the
chaotic nature of climate, varying across space and time), as well as decisions
made in post-processing or bias-correction of ESM output. Additionally, regres-
sion uncertainty from impact models affects the estimation of damage functions.
Differentiating and prioritizing these sources of uncertainty can provide clearer
guidance for regional-scale decision-making.

Fourth, I call for adaptation policies that are robust to potential negative feed-
backs on local climate impacts. Land-use changes have dramatic impacts on bio-
diversity and global climate change. They also affect regional climate impacts. In
my work, I suggest carefully considering the feedback effects that our economic
activities and adaptation actions to a given climate impact scenario may have on
these regional impacts, as well as potential spillovers. These feedbacks are likely
to reverse and reduce the welfare gains expected from adaptation along a war-
ming scenario. Robust adaptation policies must account for these more complex
interactions between economic activity, climate change and climate impacts at the
regional scale to avoid maladaptation.

This research has several limitations. First, high-dimensional problems are of-
ten numerically intractable when integrating all dimensions simultaneously, ne-
cessitating a siloed approach to different dimensions. This segmentation means
that the total welfare cost of these uncertainties is not fully considered. Often, it
is assumed that the costs of each new uncertainty are additive, which is unlikely
due to the dynamic interactions and interdependence among subsystems at the
earth-human interface. Second, while physical knowledge has advanced signifi-
cantly with gridded data, socio-economic data at a comparable scale and quality
are generally lacking, especially outside OECD countries and China. Establishing
a research center at Université Paris-Saclay to systematically develop harmoni-
zed datasets or implement harmonized downscaling practices for gridded socio-
economic data globally could provide a substantial global public good and have
a large research impact. Some researchers are already investigating these direc-
tions (Mikou et al., 2024).

These studies pave the way for numerous future research opportunities. Buil-
ding on the four dimensions previously discussed, I aim to develop a more inte-
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grated approach that bridges the positive and normative perspectives. My goal is
to retain the detailed, evolving gridded spatial data from the positive approach,
along with its insights into endogenous adaptation mechanisms. Simultaneously,
I wish to preserve the optimal intertemporal ethical framework from the nor-
mative approach, which addresses economic risk, climate risk, and other criti-
cal issues such as biodiversity loss and planetary limits, including their complex
interactions. To accomplish this, we need to model credible geophysical mecha-
nisms and their interactions with economic activity. Additionally, advancing this
approach will require improved modeling of system robustness, adaptability, and
emergent properties that arise from complex interactions among system compo-
nents—elements that cannot be predicted by analyzing components in isolation.
Beyond space, time, risk, and scientific uncertainty, there are other intriguing as-
pects of the climate challenge and its policy implications to explore. These include
system complexity (e.g., interactions, feedback loops), our attitude towards this
complexity, and its interplay with conventional risk and scientific uncertainty le-
vels and aversions (Oprea, 2024). Finally, further understanding is needed regar-
ding preferences for managing unequal risk exposure, including both market and
non-market impacts across various scales (such as health) and differing adaptive
capacities. This exploration may lead to a focus on place-based ex ante environ-
mental policies (Gaubert et al., 2021; Conte et al., 2022), for instance in the more
general framework of the European Union cohesion policy. I have already started
diving into these intriguing waters !
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Conclusion

L’analyse économique du changement climatique se situe à l’intersection de
quatre dimensions essentielles : le temps, l’espace, le risque stochastique et l’in-
certitude scientifique. L’interaction entre ces dimensions donne lieu à deux ques-
tions complémentaires, l’une normative et l’autre positive.

Comment les incertitudes découlant de ces quatre dimensions affectent-
elles le choix social optimal à l’interface des systèmes naturels et humains?
Selon moi, ces incertitudes nécessitent la poursuite de deux programmes connec-
tés mais distincts. Premièrement, nous devrions améliorer la modélisation du
spectre spatio-temporel des futurs possibles compte tenu du risque stochastique
et de l’incertitude scientifique concernant ces futurs possibles. En d’autres termes,
nous devrions fonder nos décisions sur les meilleures informations disponibles.
Deuxièmement, nous devrions adopter des critères de choix social qui permettent
de porter un jugement optimal sur ces situations, en veillant à ce que les citoyens
disposent de cadres décisionnels flexibles qui tiennent compte des divers para-
mètres de préférence dans les quatre dimensions examinées. Nous pouvons alors
séparer notre connaissance des futurs possibles de notre attitude à l’égard de ces
divers futurs possibles. Notre compréhension des futurs possibles devrait nous
permettre d’élaborer des cadres de choix sociaux appropriés. Lorsque l’incerti-
tude scientifique est la question prédominante, une plus grande flexibilité dans
la prise de décision dans cette dimension est nécessaire. Lorsque l’hétérogénéité
spatiale est la principale préoccupation, l’aversion pour l’inégalité peut devenir
plus pertinente. Si le principal défi réside dans le risque global important lié à des
événements catastrophiques irréversibles, les critères de choix social doivent être
suffisamment adaptables pour intégrer l’aversion à l’égard de ces risques.

Dans le premier chapitre, nous explorons les conditions de validité de l’utilité
espérée en présence d’un risque de basculement, où le risque global sur l’utilité
inter-temporelle est très élevé. Ce risque global est grand en raison d’une caracté-
ristique particulière de ces événements catastrophiques par rapport à des événe-
ments extrêmes plus classiques tels que les catastrophes naturelles : leur nature
irréversible, du moins à des échelles pertinentes pour la politique économique. En
conséquence, nous adaptons notre approche de modélisation du risque, en optant
pour un cadre basé sur le risque de changement de régime irréversible - caracté-
risé par des transitions d’un état qualitatif à un autre - plutôt que sur la volatilité
ou les risques réversibles typiquement modélisés le long de tendances macroéco-
nomiques lisses. Si le seuil de basculement est franchi, le bien-être de toutes les
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générations futures est faible et positivement corrélé. Dans les modèles tradition-
nels additifs d’utilité espérée escomptée, les planificateurs font preuve de neutra-
lité à l’égard du risque global. Nous explorons donc des approches alternatives
qui offrent aux décideurs et au public une plus grande flexibilité lorsqu’ils sont
confrontés à des risques irréversibles. Nos conclusions restent toutefois nuancées,
car elles dépendent de l’ampleur estimée du risque. Comme nous l’avons déjà
mentionné, le processus de modélisation des futurs possibles est indissociable de
la tâche consistant à déterminer collectivement notre position à leur égard. Si le
risque catastrophique est très important et a des effets multiplicateurs, il peut être
judicieux de se tourner vers un critère de choix social qui accorde plus de poids
aux situations dans le monde où le bien-être inter-temporel est faible. Dans le
cas contraire, il peut être préférable de s’en tenir à l’utilité espérée, étant donné
les bonnes propriétés normatives de cette forme fonctionnelle. Tout au long de
cette analyse, ainsi que dans le chapitre 2, nous avons veillé à modéliser un vé-
ritable risque stochastique. Notre cadre permet au planificateur social d’explorer
l’arbre complet des résultats possibles et le spectre complet des futurs potentiels.
Cela a des implications importantes en termes de calcul, car nous utilisons des
méthodes de résolution globales plutôt que de nous appuyer sur des approches
déterministes ou de calculer la moyenne des résultats déterministes.

Dans le deuxième chapitre, nous étendons les deux approches : nous offrons
une représentation plus complète des futurs possibles et nous affinons le critère
de choix social afin d’intégrer une plus grande flexibilité dans la prise en compte
de l’aversion pour l’incertitude scientifique. Notre objectif était de décrire plus
précisément les risques liés au point de basculement, en utilisant une dynamique
calibrée dans laquelle les catastrophes potentielles émergent comme des proprié-
tés naturelles du système dynamique, plutôt que comme des phénomènes sty-
lisés avec des probabilités arbitraires définies ex ante. D’un point de vue analy-
tique, nous étudions les interactions entre les différents types de risques au fil
du temps. Plus précisément, nous examinons la relation entre les risques clima-
tiques globaux standard - tels que la réponse climatique transitoire aux émis-
sions cumulées, qui implique une incertitude sur la manière dont les émissions
de carbone entraînent des changements de température et leurs impacts écono-
miques ultérieurs - et les risques idiosyncratiques du sous-système, qui affectent
la dynamique du système lui-même. En outre, nous tenons compte de l’incerti-
tude scientifique, un facteur crucial qui imprègne l’analyse de ces sous-systèmes,
comme le montre l’utilisation par le GIEC d’échelles de confiance et de probabi-
lité, ainsi que les débats en cours au sein de la science climatique sur les risques de

200



basculement, en particulier pour l’Amazonie. Nous modélisons deux formes dis-
tinctes d’incertitude : l’incertitude concernant la relation entre le changement cli-
matique mondial et la dynamique du sous-système, et l’incertitude concernant la
forme fonctionnelle de ce sous-système dynamique. D’autres incertitudes scien-
tifiques pourraient être étudiées, en particulier si elles interagissent avec l’incer-
titude concernant la dynamique des sous-systèmes en question.

Comment les incertitudes découlant des quatre dimensions décrites ci-dessus
- le temps, l’espace, le risque et l’incertitude scientifique - influencent-elles nos
estimations des impacts climatiques futurs à l’interface des systèmes naturels
et humains? Les progrès récents de l’économie du climat ont été moins axés sur
le temps (par exemple, affiner notre compréhension des impacts économiques
dynamiques du changement climatique ou étendre les analyses à des horizons à
long terme comme l’échelle du millénaire), le risque (par exemple, mieux com-
prendre les réponses non linéaires des sociétés aux impacts climatiques) ou l’in-
certitude scientifique (par exemple, prédire sa trajectoire probable avec un cadre
d’apprentissage). Les développements les plus significatifs ont eu lieu dans la di-
mension spatiale. Comme la littérature travaille de plus en plus à des échelles
spatiales plus fines, sous l’impulsion de la croissance rapide de la disponibilité
des données en grille pour la prise de décision, il est crucial d’évaluer les im-
plications pour nos méthodes et approximations existantes de ces évolutions,
en particulier en ce qui concerne deux aspects. Premièrement, ce qui est vrai à
l’échelle mondiale peut ne pas s’appliquer aux niveaux local ou régional. Deuxiè-
mement, nous devons tenir compte de l’impact des progrès réalisés dans une di-
mension sur notre compréhension des autres dimensions pour relever les défis
climatiques.

Dans le troisième chapitre, nous démontrons qu’en raison de la nature non
linéaire des relations entre le climat et la société, la dynamique régionale joue
un rôle essentiel dans les projections d’impact climatique : les agrégations tem-
porelles et spatiales modifient le coût agrégé et la distribution des impacts sur
le bien-être futur, ainsi que le classement des risques entre les modèles clima-
tiques. Ces différences sont dues à l’hétérogénéité régionale des dommages et
des modèles de réchauffement. La désagrégation spatiale révèle comment les in-
certitudes des modèles climatiques concernant la distribution complète des ré-
sultats météorologiques futurs se répercutent en cascade sur les estimations des
dommages régionaux. Nous nous concentrons sur la manière dont l’agrégation
temporelle annuelle actuelle peut fausser les projections de l’impact climatique.
En utilisant la distribution annuelle complète des températures moyennes quo-

201



tidiennes, nous saisissons les variations intra-annuelles des modèles de tempé-
rature, en évitant de nous appuyer sur des statistiques sommaires arbitraires du
vecteur climatique à haute dimension, par exemple la moyenne annuelle ou le
nombre de jours au-dessus d’un seuil. Nous pourrions aller plus loin en désa-
grégeant davantage la dimension temporelle, par exemple en considérant séparé-
ment les températures diurnes et nocturnes, afin de mieux saisir des phénomènes
tels que les jours de canicule.

Dans le chapitre 4, j’incorpore les impacts biophysiques régionaux des chan-
gements d’utilisation des terres dans un modèle spatial quantitatif dans le cadre
du scénario SSP2-4.5. Ces impacts résultent des changements d’albédo, d’évapo-
transpiration et de rugosité de la surface, déclenchés par les changements d’usage
des sols, notamment depuis et vers des terres agricoles et urbaines. D’autres im-
pacts biophysiques et transitions dans l’utilisation des terres pourraient égale-
ment être pris en compte. J’insiste sur l’importance de tenir compte des inter-
actions entre les activités économiques régionales, les changements physiques
mondiaux et régionaux et leurs impacts locaux. Ces impacts ont également des
effets d’entraînement en raison des migrations, des changements dans les prix
relatifs, de la spécialisation sectorielle et de la structure des échanges. Il est es-
sentiel de tenir compte non seulement des incertitudes exogènes lors de la trans-
position du changement climatique mondial aux impacts locaux, mais aussi de
la manière dont les décisions locales influencent ces processus de manière endo-
gène. Les choix locaux en matière d’utilisation des sols déterminent de manière
significative les impacts climatiques futurs et peuvent compromettre les avan-
tages escomptés des mesures d’adaptation. De nombreuses incertitudes au-delà
des effets primaires des émissions mondiales restent sous-étudiées. Bien que se-
condaires en termes globaux, ces mécanismes peuvent avoir des conséquences
distributives importantes au niveau régional et des effets qualitatifs plus précis
sur les modèles. Le fait de se concentrer uniquement sur des scénarios carbo-
intensifs tels que le SSP5-8.5 limite notre capacité à examiner ces dynamiques
plus complexes.

Cette thèse me permet de proposer quelques recommandations modestes en
matière de politique publique.

Premièrement, tous les risques climatiques ne sont pas égaux. Les risques
ayant des effets multiplicateurs et des conséquences irréversibles doivent être
traités avec une plus grande urgence, ce qui justifie des réductions d’émissions
substantielles dès aujourd’hui. Une conclusion similaire pourrait être tirée pour
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les événements répétés mais réversibles qui entraînent des dommages irréver-
sibles au fil du temps. Toutefois, les interactions non linéaires potentielles entre
les systèmes humains et les événements climatiques répétés restent sous-explorées
- tant dans les estimations de la fonction de dommage dans la littérature éco-
nométrique que dans les modèles théoriques, où les impacts sont généralement
supposés être additifs.

Deuxièmement, je propose des politiques de gestion des grands sous-systèmes
climatiques, tels que la forêt amazonienne. Je recommande de mesurer l’impact
des émissions de carbone sur la dynamique de ces sous-systèmes afin de ré-
partir plus équitablement la responsabilité des futurs changements. Cette ap-
proche pourrait également permettre de collecter des fonds pour soutenir les
mécanismes d’incitation coasiens en vue d’une gestion de ces sous-systèmes au
niveau régional. En outre, la prise en compte de la dynamique du système dans
son ensemble peut améliorer la gestion régionale, par exemple dans les analyses
coûts-avantages de la déforestation dans les forêts tropicales, en tenant compte
de l’impact des changements marginaux sur la résilience à long terme du sous-
système. Bien que ces mécanismes ne représentent qu’une petite partie du coût
social du carbone, ils représentent des montants significatifs lorsqu’ils sont appli-
qués à la taxation mondiale de toutes les émissions de GES.

Troisièmement, je plaide en faveur d’une prise de décision régionale mieux in-
formée sur l’incertitude climatique, en particulier lors de la réduction de l’échelle
du changement climatique mondial en fonction des impacts locaux. Les plans
d’adaptation à des échelles plus fines, du niveau national au niveau local, de-
vraient être conçus pour être robustes à la distribution complète des futurs pos-
sibles, plutôt que de se concentrer sur un scénario moyen. Le scénario moyen
masque des incertitudes significatives, qui non seulement persistent mais s’inten-
sifient souvent à plus petite échelle. Surtout, il ne tient pas compte des diverses
sources d’incertitude. La variance quantifiable des projections d’impact clima-
tique régional est influencée par l’incertitude des scénarios (différences entre les
SSP), l’incertitude des modèles climatiques (variations des réponses des modèles
du système terrestre aux SSP), la variabilité interne (due à la nature chaotique du
climat, qui varie dans l’espace et le temps), ainsi que par les décisions prises lors
du traitement ou de la correction des biais des résultats des modèles climatiques.
En outre, l’incertitude dans l’estimation des fonctions dose-réponse affecte les
projections des dommages futurs. La différenciation et la hiérarchisation de ces
sources d’incertitude peuvent fournir des orientations plus claires pour la prise
de décision à l’échelle régionale.
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Quatrièmement, j’appelle à des politiques d’adaptation qui soient robustes
aux rétroactions négatives potentielles sur les impacts climatiques locaux. Les
changements d’usage des sols ont des répercussions considérables sur la biodi-
versité et le changement climatique mondial. Ils ont également une incidence sur
les impacts climatiques régionaux. Dans mon travail, je suggère d’examiner at-
tentivement les effets de rétroaction que nos activités économiques et nos me-
sures d’adaptation à un scénario d’impact climatique donné peuvent avoir sur
ces impacts régionaux, ainsi que les retombées potentielles. Ces rétroactions sont
susceptibles d’inverser et de réduire les gains de bien-être attendus de l’adapta-
tion dans le cadre d’un scénario de réchauffement. Des politiques d’adaptation
robustes doivent tenir compte de ces interactions plus complexes entre l’activité
économique, le changement climatique et les incidences climatiques à l’échelle
régionale afin d’éviter toute mauvaise adaptation.

Cette recherche a plusieurs limites. Tout d’abord, les problèmes à haute di-
mension sont souvent numériquement dificiles à résoudre lorsqu’ils intègrent
toutes les dimensions simultanément, ce qui nécessite une approche cloisonnée
des différentes dimensions. Cette segmentation signifie que le coût total de ces in-
certitudes en termes de bien-être n’est pas entièrement pris en compte. Souvent,
on suppose que les coûts de chaque nouvelle incertitude sont additifs, ce qui
est peu probable en raison des interactions dynamiques et de l’interdépendance
entre les sous-systèmes à l’interface des systèmes naturels et humains. Deuxiè-
mement, alors que les connaissances physiques ont considérablement progressé
grâce aux données maillées, les données socio-économiques à une échelle et une
qualité comparables font généralement défaut, en particulier en dehors des pays
de l’OCDE et de la Chine. L’établissement d’un centre de recherche à l’Univer-
sité Paris-Saclay pour développer systématiquement des ensembles de données
harmonisés ou mettre en œuvre des pratiques de réduction d’échelle harmoni-
sées pour les données socio-économiques maillées à l’échelle mondiale pourrait
fournir un bien public mondial substantiel et avoir un impact important sur la
recherche. Certains chercheurs se penchent déjà sur ces questions (Mikou et al.,
2024).

Ces études ouvrent la voie à de nombreuses possibilités de recherche futures.
En m’appuyant sur les quatre dimensions examinées précédemment, je vise à
développer une approche plus intégrée qui fait le lien entre les perspectives posi-
tives et normatives. Mon objectif est de conserver les données spatiales détaillées
et évolutives de l’approche positive, ainsi que les informations sur les méca-
nismes d’adaptation endogènes. Simultanément, je souhaite préserver le cadre
éthique inter-temporel optimal de l’approche normative, pour aborder le risque
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économique, le risque climatique et d’autres questions cruciales telles que la perte
de biodiversité et les limites planétaires, y compris leurs interactions complexes.
Pour ce faire, nous devons modéliser des mécanismes géophysiques crédibles et
leurs interactions avec l’activité économique. En outre, pour faire progresser cette
approche, il faudra améliorer la modélisation de la robustesse, de l’adaptabilité
et des propriétés émergentes des systèmes, qui résultent des interactions com-
plexes entre les composants des systèmes, éléments qui ne peuvent être prédits
par l’analyse des composants pris isolément. Au-delà de l’espace, du temps, du
risque et de l’incertitude scientifique, il existe d’autres aspects fascinants du défi
climatique et de ses implications politiques à explorer. Il s’agit notamment de la
complexité du système (par exemple, les interactions, les boucles de rétroaction),
de notre attitude à l’égard de cette complexité et de son interaction avec les at-
titudes plus conventionnelles vis-à-vis du risque et de l’incertitude scientifique
(Oprea, 2024). Enfin, il est nécessaire de mieux comprendre les préférences en
matière de gestion de l’exposition inégale aux risques, y compris les incidences
marchandes et non-marchandes à différentes échelles (telles que la santé) et les
différentes capacités d’adaptation. Cette exploration pourrait conduire à mettre
l’accent sur les politiques environnementales basées sur le lieu ("place-based") et
ex ante (Gaubert et al., 2021; Conte et al., 2022), par exemple dans le cadre plus
général de la politique de cohésion de l’Union Européenne. J’ai déjà commencé à
plonger dans ces eaux intrigantes !
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