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Knowing how future climate damages might be distributed in time and space7

is a key research frontier and policy issue for climate scientists, economists, and8

decision-makers. Projections of endogenous climate damages in macroeconomic9

models [Fernández-Villaverde et al., 2024] typically rely on reduced-form relation-10

ships between climate change and the macroeconomy, which are generally based11

on annual climatic statistics—e.g. mean annual temperatures. Furthermore,12

models are generally aggregated for that climate variable to be global—mean an-13

nual global temperatures. In these integrated climate-economy models, carbon14

emissions are a by-product of regional economic activities. A reduced-form cli-15

mate module then allows to capture how these carbon emissions turn into global16

annual mean temperature anomaly, from which regional annual mean temper-17

ature anomaly can be down-scaled through a simple linear and time-invariant18

factor ; a process also called pattern scaling. The regional physical impacts are19

then interacted with dose-response functions estimated on global data to mea-20

sure the economic impacts of endogenous climate change. These macroeconomic21

models are either global [Nordhaus, 1994], regional [Nordhaus and Yang, 1996]22

or gridded, as in the burgeoning spatial integrated assessment modelling (IAM)23

literature [Desmet and Rossi-Hansberg, 2024], e.g. Krusell and Smith Jr [2022]24

and Cruz and Rossi-Hansberg [2024].25

The underlying assumption behind these approaches is that the shapes of the26

spatio-temporal distributions of mean temperatures do not matter. First, with27

regard to the temporal dimension, the intra-annual shape of the distribution of28

daily mean temperature is assumed to remain constant: temperature increases29

due to climate change are shape-preserving increases in annual mean. Second, re-30

garding the spatial dimension, an average increase in temperature at global level31

is assumed to affect the regional annual distribution by a linear and time-invariant32

down-scaling factor such as the regional transient response to cumulative emis-33

sions [Leduc et al., 2016]. The reality of future regional weather changes, however,34

seems more complex, for two main reasons. First, natural climate variability over35
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time and space, both from external (e.g. solar cycles) and internal factors (e.g.36

El Niño-La Niña), might distort future temperature distributions beyond the an-37

nual mean [Schwarzwald and Lenssen, 2022]. Second and more fundamentally,38

the process determining the shape of the weather distribution within a given year39

for a given regional mean temperature might not be stationary, so that time-40

invariant relations between annual averages and the intra-annual distribution of41

weather only imperfectly reflect regional-specific shifts in warming patterns. In42

North-West Europe, for example, hottest summer days are warming twice as fast43

as mean summer days [Garćıa-León et al., 2021, Patterson, 2023]. That opens44

the question around the ‘right’ level of spatial and temporal aggregation for pro-45

jecting future impacts. Aggregation has advantages, as it comes with statistical46

robustness, clear identification of causal relationships, and tractability in models47

where anomaly in climate results from endogenous anthropogenic emissions; it48

also has shortcomings, such as the risk of averaging contradictory effects between49

regions both in terms of damage and warming patterns.50

In parallel to integrated assessment models with endogenous climate change51

stemming from anthropogenic carbon emissions, some integrated assessment mod-52

els use exogenous global circulation model projections to infer the costs of climate53

change with adapting agents, e.g. spatial IAM such as Bilal and Rossi-Hansberg54

[2023] and Rudik et al. [2022]. In these models, which incorporate credible cli-55

mate projections, climate change remains exogenous to economic activities. As56

a result, the estimates from the two bodies of literature, i.e. endogenous and57

exogenous, evolve in parallel, yet the effects of this divergence on the aggregate58

and distributional estimates of climate impacts remain unclear. Our paper aims59

to shed light on this gap. Indeed, our paper tests the impact of two separate60

(but related) limitations of many existing studies: the effect of separately fitting61

models by region on the initial dose response function, and the effect of including62

regional climate change and projections that sample changes in the entire distri-63

bution on future projections using those dose response functions. To disentangle64
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these effects, we here follow a two-step approach. First, we switch from annual65

average temperatures to the complete daily temperature distribution over a year66

and show how this affects the heterogeneous distribution of warming patterns67

between regions, compared to a setting where we assume a shape-preserving shift68

in mean annual temperatures under a synthetic changing climate. Second, we69

interact these regional-specific shifts in warming patterns with regional-specific70

damage patterns, in comparison with a setting where we assume homogeneous71

damage patterns at the global scale. Indeed, when disaggregating to regional lev-72

els, economists often use global damage functions, instead of using estimates from73

regional-specific damage patterns. Meanwhile, it seems intuitive that a hot day in74

a relatively warm country has a different impact than the same day in a cold coun-75

try; Heutel et al. [2021] show this to be the case for U.S. counties. Alongside efforts76

to measure the non-linear effects of temperature on economic activity, for exam-77

ple with temperature bins [Dell et al., 2014, Hsiang, 2016, Auffhammer, 2018],78

we measure regional dose response functions, to capture some of the regional id-79

iosyncrasies in the climate-society relation. We focus on a physical idiosyncrasy80

and estimate regional dose-response functions for each aggregate Köppen-Geiger81

climatic zone: arid, continental, polar, temperate, tropical.82

These debates over the spatio-temporal aggregation of climate projections might83

have important consequences, not only for establishing our best approximation of84

future damage and reconciling different approaches, but also in quantifying the85

uncertainty surrounding this best guess. Uncertainties in climate-economic mod-86

elling abound [Rising et al., 2022, Kotz et al., 2023]. The quantifiable variance of87

future projections of climate impacts is affected by scenario uncertainty (differ-88

ences in Shared Socioeconomic Pathways - SSPs), model uncertainty (differences89

in Earth System Models - ESM - responses to the SSPs), internal variability90

(spatiotemporally, due to the chaotic nature of the climate and due to regional91

differences that may be hidden by regional aggregation), any choices made in92

post-processing or bias-correcting ESM output (including how finely to apply93
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projected changes in climate distributions from ESMs), in addition to regression94

uncertainty from the dose-response functions, and differences between observa-95

tional data products used to fit the dose-response function and act as a baseline to96

which future ESM output is compared. Historically, many studies use global an-97

nual average climate variables to estimate and project climate damages, thereby98

ignoring an important source of internal variability stemming from regional dif-99

ferences in climate states and from only extracting mean changes from ESM100

projections. Among all uncertainties, we focus on two uncertainties and their in-101

teraction: the sensitivity of economic impact projections to an improved sampling102

of internal variability (through capturing regional differences in impacts) and an103

improved treatment of ESM output (by capturing changes in the full shape of the104

temperature distribution instead of annual averages). We take part in uncovering105

some of the model uncertainties between ESM using the whole shape of warming106

patterns that is usually reduced by the aggregation procedure on a global and107

annual scale. We provide a framework based on temperature distributions that108

can be applied to other climate data, for instance precipitation or maximum tem-109

peratures, and a quantification to show how much the regional-specific shift in110

the shape of warming patterns interacting with regional-specific damage patterns111

matter empirically, both at the aggregate level and in the distribution of impacts,112

with the year 2050 as a case study.113

Our work yields two main conclusions. First, switching from annual global114

mean temperature to the regional annual distribution of daily mean tempera-115

tures affects the magnitude of the estimates of economic damages: in 2050, using116

regional damage patterns interacted with the shift in the whole shape of the dis-117

tribution of daily temperatures yields climate damage at the global scale that118

are around 25% larger than the damage obtained under the assumption of homo-119

geneous damage patterns over the world and a shape-preserving shift in annual120

mean daily temperature. Standard aggregation comes with underestimation of121

future climate damages. This result holds for a variety of more or less carbo-122
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intensive SSPs: SSP1-2.6, SSP3-7.0 and SSP5-8.5. Second, we show that the123

distributional effect is not clear-cut. Uncertainty in the change in the shape of124

the temperature distributions affects all regions of the world in a heterogeneous125

way, but is particularly strong in continental areas. This result is important for126

standard climate change adaptation modelled in spatial integrated assessment127

models. Indeed, they project that adaptation through migration to some regions128

[Cruz and Rossi-Hansberg, 2024] or greater agricultural output in these regions129

through structural change [Conte et al., 2021] might reduce the aggregate wel-130

fare impacts of climate change and have large distributional implications, with131

many benefits shifting to the northern hemisphere. The benefits of adaptation to132

mitigate the aggregate welfare costs of climate change could therefore be overesti-133

mated if the regions to which people migrate and where more agricultural output134

is produced are continental climatic zones, which is the case.135

I. Climate and economic data136

A. Warming patterns137

We compare the distribution of daily mean temperatures in actual climate pro-138

jections to a counter-factual synthetic projection where the shape of the distribu-139

tion remains the same while the mean annual temperature increases, a standard140

assumption in the literature. We build different climate landscapes, where ‘cli-141

mate’ is defined as the underlying distribution, from which a specific regional142

temperature distribution over a year is drawn [Waidelich et al., 2023]. We use143

CMIP6 bias-corrected and downscaled data at a resolution of 60 arc-minutes144

from five earth system models (ESM) stored in ISIMIP Protocol 3B [Frieler145

et al., 2023]: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM2-0,146

UKESM1-0-LL. ISIMIP subset of climate models and de-biasing techniques were147

designed to assess impacts of climate change and to span the larger ensemble148

of CMIP models [Warszawski et al., 2014]. Thus, our illustrative study under-149

estimates inter-model uncertainty among the over 100 CMIP6 models. Data is150
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available for three shared socioeconomic pathways (SSP 1-2.6, 3-7.0, 5-8.5). We151

construct four different climate landscapes for each SSP. The first is the climate152

landscape without climate change, the ‘control’ climate: it is the mean distribu-153

tion of ‘picontrol’ time series experiments run over 2006 to 2100 with pre-industrial154

CO2 concentration. The second is the landscape from actual climate projections155

which consists of bias-corrected, downscaled output from five ESMs forced with156

future emissions from three different SSPs, the ‘projection’ climate: we use the157

average of the 10-year distribution around a date to approximately capture the158

underlying distribution from which the specific weather realization from a spe-159

cific year is drawn, i.e. 2045-2055 in our example1. This landscape samples160

scenario uncertainty, inter-model uncertainty, and regionally specific changes in161

the shape of daily mean temperature distributions. The third climate landscape162

is a ‘synthetic-model’ landscape, where we add for each temperature observed in163

the ‘control’ climate of each of the five ESM the mean of the change in annual164

temperature in ‘projection’ climate in this specific ESM. This yields a ESM-165

specific shape-preserving mean-shifted climate. This landscape samples scenario166

uncertainty, inter-model uncertainty, and regional differences in mean changes,167

but keeps the shape of daily mean temperature distributions unchanged. The168

last climate landscape is a ‘synthetic-general’ landscape. The difference with the169

‘synthetic-model’ approach is that we sum the mean ‘control’ climate over all170

ESM and the mean change in annual mean temperature across ESM. This yields171

a mean shape-preserving, mean-shifted climate, which aggregates heterogeneity172

between climate models. This landscape samples scenario uncertainty and re-173

gional differences in mean changes while aggregating across ESMs and keeping174

the shape of daily mean temperature distributions unchanged.175

Rather than aggregating this data at the global scale, we construct regional176

1On the one hand, adding more years around 2050 would enable us to capture more of the internal
variability which characterizes 2050 climate [Schwarzwald and Lenssen, 2022], for instance more El Niño
cycles. On the other hand, it would come with a costly assumption of perfect symmetry around 2050 in
climate change dynamics. By capturing less internal variability, we probably under-count the impact of
including regional information.
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climate landscapes. Indeed, using a global dataset means that locations in which177

a given temperature is relatively cold and places in which the same temperature178

is relatively warm in the two locations fall within the same bin of temperature,179

which distorts the picture of regional climate shifts, and biases the estimates180

used to convert these climate shifts into economic damage. We aggregate at the181

level of five major Köppen regions [Beck et al., 2023]: arid, continental, polar,182

temperate and tropical. It is reasonable to think that these climate classifications183

are both good ensembles in terms of warming patterns but also in terms of damage184

patterns to capture differences between relatively homogeneous regions. If the185

differences between damage patterns differ for many other reasons (e.g. cultural186

and political), we capture some of the regional heterogeneity due to climatic187

conditions. A finer disaggregation would reduce the statistical robustness of the188

estimates we obtain from our econometric specification below because of limited189

sample size and variation. When building these climate landscapes, we keep only190

locations for which we have economic data to estimate dose-response functions191

below and treat each of these economic region within each climatic Köppen region192

as a single unit.193

B. Econometric estimates of climate damages194

For the empirical analysis we combine Wenz et al. [2023]’s Database Of Sub-

national Economic Output (DOSE v2) with Hersbach et al. [2020]’s climate re-

analysis (ERA5). We process the climate reanalysis by first calculating degree-

days at the grid-cell level and then aggregating to DOSE regions. We use the

combined data to estimate global and regional dose-response functions of GDP

growth to daily mean temperatures. We estimate the model:

git = αi + Pitβ +

B∑
b=1

nbitγb + µt + ϵit
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with the growth rate of GDP per capita PPP in USD in administrative unit i in195

year t as git, with the number of days with daily mean temperature in the bin196

indexed b as nbit, and with total annual precipitation Pit. Note that here, Pit197

is indeed only a control, focused on global annual values, rather than regionally198

disaggregated daily ones [Kotz et al., 2022]. The model also includes region199

fixed effects αi and year fixed effects µt. Errors ϵit are clustered at the level200

of countries to account for spatial and temporal autocorrelation. We estimate201

this model for all regions jointly and for each Köppen-Geiger climate zone k202

separately. Our main parameters of interest are the coefficients of temperature203

bins γb (for the global model) and γbk (for the regional models) which represent204

the non-linear association between daily temperature levels and economic growth.205

For the regional model, we use a gridded dataset on Köppen climate regions206

and assign to every administrative unit the share of each climatic zones it is207

included in based on surface area. The 2°C temperature bins are winsorized208

at level 99% for econometric estimation to limit the influence of rare events for209

which we do not have sufficient observations. Furthermore, we follow Cruz and210

Rossi-Hansberg [2024] and smooth the behavior of the point estimates across211

temperature bins on the whole temperature distribution in 2050 with degree-212

two polynomials, assuming that temperature effect on growth changes remains213

constant above and below our upper and lower bins used for the estimation. We214

also weigh each point estimate by the inverse of their standard errors to provide215

a greater weight to the more accurate estimates.216

C. Descriptive statistics217

Figure 1 gives summary statistics for the warming and damage patterns of each218

region in 2050 for SSP5-8.5. Graphs on the left plot the distribution of mean219

daily temperatures for all climate landscapes, taking the average of all five earth220

system models. The distributions have different shapes, both in terms of their221

dispersion and their mean. The shifts in the average temperature are also of222
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different magnitude, which is consistent with the observation of spatially hetero-223

geneous global warming. Shifts in shapes are also diverse, and not just because224

of the initial shape of each distribution as we show on the middle graphs. The225

middle graphs describe the difference between the ‘synthetic-model’ and the ‘pro-226

jection’ landscapes for different earth system models: for each 1°C temperature227

bin, it gives the difference in frequency (in number of days) between two distribu-228

tions. The first distribution is constructed by adding to each daily temperature229

for each climate model the mean of the annual anomaly observed in that model,230

thus obtaining a shape-preserving shift in mean, which is the assumption gener-231

ally made in the literature. The second distribution is taken from climate model232

projections of daily mean temperatures. These difference can have opposite signs233

and various magnitude depending on the model considered. The graphs on the234

right present the minimum, central and maximum estimates of the two global235

and regional dose-response functions of GDP growth rate to an additional day in236

a given bin in comparison with a day in the [20 : 22°C] bin, estimated for each237

region. Our regional dose-response functions reveals different damage patterns238

than the global dose-response function. For instance, while the positive effect239

of colder temperatures on GDP growth in the global functions stills holds with240

regional estimates in the continental areas, the sign of this effect is reversed for241

polar and temperate areas. For warmer days, in relatively warmer areas, the242

effect of higher temperatures goes in both directions, i.e. positive effect for arid243

areas, negative effects for tropical areas, while it is flat in our global estimate244

that conflates both climatic zones. Disentangling global and regional damage245

patterns matter for climate policy because it provides a more accurate picture of246

the spatial and temporal heterogeneity in future climate damage.247
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Figure 1. : Left Distribution of daily mean temperatures for four climate land-
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Change in growth rate from one day in this bin relative to one additional day in
[20°C : 22°C]. Data are for all DOSE regions, SSP5-8.5, 2050.

II. Quantification248

A. Missing shape-related growth effect of climate change249

We express the GDP growth effect of daily temperatures in climate projections250

as a share of this effect in synthetic climate, i.e. in a setting where we assume that251
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the shape of the distribution of daily temperatures remains the same when the252

mean increases. Indeed, we want to measure how much the change in the shape of253

the distribution of daily mean temperatures matter for the estimation of economic254

damages. To have a measure that approaches standard climate damages, growth255

effects in warming climates are expressed with respect to growth effects in control256

climate. Growth effect at each 1°C bin b is γb (γbk) if we use global (regional)257

dose-response functions, where k stands for a Köppen-Geiger climate zone. The258

global growth effect Ω for a given SSP and year in our climate landscape C for259

a given dose-response function in subadministrative region DOSE d in Köppen-260

Geiger climate zone k is:261

Ωglob,C
ymd =

(
∑

b γbt
C
bymd−

∑
b γbt

control
bymd )∑

b γbt
control
bymd

, Ωreg,C
ymdk =

(
∑

b γbkt
C
bymdk−

∑
b γbrt

control
bymdk )∑

b γbdkt
control
bymdk

Then, we apply a double difference procedure to find the change in growth262

effect between synthetic climate and projections. For damage function γ, and263

synthetic climate: DDω
ymdk = 100 ∗ (Ωω,projection

ymdk − Ωω,synthetic
ymdk )/Ωω,synthetic

ymdk , with264

ω ∈ {global, regional}. This estimate expresses the share the missing shift in265

shape represents in the standard estimates of damages assumed from shape-266

preserving synthetic shift in mean. We summarize the values of this estimate267

for various specifications in Figure 2 below which disentangles various layers of268

uncertainty. On the top left graph, we plot the dispersion in our DD estimate269

for each Köppen climatic region and each SSP, for each ESM (in blue) and the270

average over ESM (in red). This graph captures how for each region the differ-271

ences between SSP and between climate models drives the impact omitting the272

whole shape of warming pattern has on the assessment of damages. There is an273

important climate model uncertainty. Outside continental areas, depending on274

the climate model used, the sign of the difference between the standard assump-275

tion and the full shape of the distribution is either positive or negative. Part276

of this structural uncertainty between climate models is already captured when277
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comparing climate models at the aggregate annual scale. Thus, on the top right278

graph, we plot the dispersion between two methods to build our synthetic climate:279

either using the model-specific control climate and mean aggregate temperature280

increase to build the new synthetic benchmark, or using the average over different281

ESM. On the bottom left graph, we plot the difference in our estimates depending282

on the dose-response function of GDP growth to daily temperatures that is used:283

either the global dose-response function which combines potentially contradictory284

effects of changes in temperature distribution over space, or the regional estimates285

which might capture part of the spatial heterogeneity in damage patterns. On286

the bottom right graph, we plot our coefficient for the central, minimum and287

maximum estimates of the regional dose-response function to measure how much288

parametric uncertainty for a given damage function specification matters in com-289

parison with structural uncertainty about the damage function, i.e. either global290

or regional. All four sources of uncertainty that are hidden under the assump-291

tion of a shape-preserving mean-shifted synthetic climate matter, especially in292

the continental areas.293

B. Aggregate impacts294

While we build regional climate landscapes that use the granularity given in295

climate datasets rather than too aggregated information to discuss climate policy,296

we seek for global indicators that can easily be applied to aggregate economic297

models. We compute for each DOSE region within each larger Köppen-Geiger298

zone the share of missing growth due to disaggregated warming and damage299

patterns. We use area-weighting to build DOSE-level estimates of missing growth300

from DOSE*Koppen estimates. We then aggregate the DOSE-level growth effect301

to the global scale based on the share of each zone in global GDP. We use the302

synthetic-model approach to build a synthetic climate, assuming that aggregate303

uncertainty between climate model is already taken into account in the literature304

studying aggregate annual mean temperatures. Indeed, our study focuses on one305
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channel of uncertainty: the interactions between intra-annual warming patterns306

and damage patterns at the regional scale. On left graph in Figure 3, we plot307

our estimate of the share of missing growth effects for various ESM and the mean308

across ESM under regional damages. On the right graph, we plot global DD for309

two specifications of the dose-response function: either global or regional.
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Figure 3. : Left Global DD under synthetic-model approach for each ESM and
the average over ESM with regional dose-response function Right Global DD
for each dose-response function, synthetic-model approach and average climate
model with regional dose-response function.

310

The assumption made in the literature of a shape-preserving shift in mean an-311

nual global temperature interacted with global damage patterns thus yields biased312

estimates of future economic damages of climate change. For all climate models313

and across various specifications of damage patterns and economic scenarios, this314

bias is an underestimation of future damages: accounting for the shift in regional315

shape would increase the actual damage by around 25% under all concentra-316

tion pathways in 2050. The shift in shape matters also for less carbon-intensive317
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pathways. Both uncertainty between climate models on the shape of regional318

warming patterns and uncertainty on the damage patterns matter. Their inter-319

action is likely to significantly alter the temporal and spatial distribution of the320

economic damage caused by climate change. This change in the aggregate pic-321

ture of climate impacts should encourage greater mitigation and adaptation. But322

what about the distributional effects?323

324

C. Distributional impacts325

We have focused on the aggregate impact of this omitted shift in regional daily326

temperature shape. Now, when we look in more detail at the distribution of327

damage, we see that there is no perfect correlation with income: the countries328

most affected by these shifts in the patterns of intra-annual weather distribution329

are not necessarily the poorest. In fact, the opposite is true, even if the data are330

widely scattered. In Figure (4) below, we show on the left that, for certain DOSE331

regions, climate impacts are in fact lower when using climate projections with332

intra-annual temperature distributions with regional response functions than in a333

synthetic approach using a mean-shifted shape-preserving climate. In particular,334

we show on the right graph that gives the distribution of omitted impacts for335

each quantile of the 2015 distribution of DOSE regions in terms of USD GDP per336

capita that this applies to the poorest 20% of regions, even if the distribution is337

fairly skewed.338

Uncertainty about changes in the shape of regional temperature distributions339

interacts with regional damage functions mainly concerning continental regions,340

as we show on Figure (5), in line with estimates from Figure (1). This is partic-341

ularly important if less significant impacts are expected in these regions, notably342

on agricultural productivity, but also on regional amenities, which could justify343

adaptations that reduce the total cost of climate change. The welfare benefit344

of these adaptations would be particularly reduced if it turns out that these re-345



CLIMATE SHIFT UNCERTAINTY AND ECONOMIC DAMAGES 17

0

100

200

300

-25 0 25 50 75 100

Omitted impacts (in %)

N
um

be
r 

of
 D

O
S

E
 r

eg
io

ns

-25

0

25

50

75

100

1 2 3 4 5
GDP per Capita Quantiles

O
m

itt
ed

 im
pa

ct
s 

(in
 %

)

Figure 4. : Estimates are for year 2050, SSP5-8.5. Left Distribution of impacts (in
% of current estimates) across DOSE regionsRight Distribution of impacts across
and within 2015 USD GDP per capita quantiles of DOSE regions. The colored
bars span the interquartile range for each quantile. The black lines represent the
mean for each quantile.

gions have very significant welfare changes: impacts on growth up to 100% higher346

than estimates based on global dose-responses interacted with shape-preserving347

projected climates.348

III. Conclusion349

If climate-society relationships were linear, then aggregating would not make350

any difference. But since they are nonlinear, what happens at the regional and351

intra-annual levels matters. Indeed, switching from annual global mean tem-352

perature to a regional annual distribution of daily mean temperatures affects353

the magnitude of economic damages from climate change. This change comes354

from heterogeneity in both damage and warming patterns across regions. Spatio-355
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Figure 5. : Map of DOSE regions with their associated missing-shaped related
climate impacts, as a share of 2050 estimated growth impacts along SSP5-8.5.

temporal disaggregation, thus, reveals how uncertainty between climate models356

on the whole shape of the distribution of future weather realizations cascades357

down to regional damage estimates. This shape uncertainty affects risk rankings358

across models and increases the magnitude of uncertainty between models. More-359

over, accounting for daily temperatures rather than annual averages increases the360

estimation of economic damages, a finding consistent with previous studies [Rudik361

et al., 2022]. In 2050, under SSP5-8.5, using regional damage patterns interacted362
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with the shift in the entire shape of the distribution of daily temperatures, yields363

climate damages at the global scale that are 25% larger than the damage obtained364

under the assumption of homogeneous damage patterns over the world and shape-365

preserving shift in annual mean daily temperature. The shape uncertainty about366

shifts in daily temperature distributions and regional damage patterns should367

therefore be taken into consideration for decision-making.368

To our knowledge, we provide the first comparison between various approaches369

to spatial and temporal aggregation regarding impacts of changes in mean surface370

temperatures on economic activity and quantify how much these often-overlooked371

aggregation procedures matter empirically. We believe that this procedure can372

be reasonably translated horizontally and vertically. Vertically, this framework373

can be applied to other economic damages stemming, for instance, from changes374

in maximum or minimum daily temperatures. Horizontally, the framework could375

be used to infer results in regions for which we do not have socioeconomic data376

to estimate damage functions. In this work, we have kept the DOSE regions377

for the sake of consistency. But using Köppen-Geiger climatic zones, i.e. widely378

available physical data, to build ensembles and generalize the results over these379

ensembles could be a useful detour at first, alongside a necessary deepening in380

the availability of socioeconomic data, particularly in Africa.381

Our analysis also comes with limitations. In particular, our estimation of re-382

gional damage functions is based on the idea that differences in the economic dam-383

age caused by weather—and therefore by climate change—is intimately linked to384

climatic zones. However, there are many factors that go well beyond geographical385

determinism that we do not explore here. Furthermore, Earth System Models are386

imperfect, and some may not be able to capture well the shape (or changes in the387

shape) of the temperature distribution [Kornhuber et al., 2023]. When it comes388

to estimating the future damage of climate change, other approaches use annual389

temperature [Bilal and Känzig, 2024] and thus avoid the problem of time-fixed390

effects, which erase a large proportion of the impacts. The question of aggregation391
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is less of an issue in this case, as these approaches consider annual temperature to392

be a sufficient statistic for estimating impacts. Nevertheless, the question of the393

relevance of past natural variability as a proxy for global annual climate change394

based on complex processes and rising carbon concentration remains. This ques-395

tion is left for future research. Finally, while we studied variations of warming396

patterns in space and time, and variation of damage patterns in space, we have397

left out the question of variation of damage patterns in time under a ‘swinging398

climate’ [Mérel et al., 2024]—i.e. adaptation to shifts in climate. How might399

a given daily temperature yield different damages in any particular region un-400

der a different climate, as the region moves away from its normal climatic zone?401

Lastly, that raises the question of how adaptation might interact with the entire402

distribution of climatic factors, a question left for further research.403
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Appendix A. Building climate landscapes410

We scale the frequency of observations by the share of land area in each cell411

using GPW4 dataset. We compare changes in shapes of daily mean temperature412

distributions Tmr in five Köppen regions r and climate model m, i.e. the dis-413

tribution of all Tmr daily mean temperatures in region r and model m, in four414

different climates C. Climate C are: a control climate, ISIMIP projections, the415

synthetic distribution with model average, the synthetic distribution with average416

over models. We bin the temperature distributions t at 1°C: f(.) is a function417

that bin the distributions. Our final landscapes for each year are:418

• Control climate, without climate change T control
mr = f(tcontrolmr )419

• ISIMIP projections T proj
mr = f(tprojmr )420

• Synthetic model with model average are built by adding the difference be-421

tween binned projections and control climate422

T synth.model
mr = f

(
tcontrolmr + T proj

mr − T control
mr

)
423

• Synthetic model with total average are built by adding the difference be-424

tween binned projections and control climate, averaged over all models m425

in ensemble M426

T synth.general
mr = f

(
tcontrolmr +meanM (T proj

mr − T control
mr )

)
427

Let us define a climate shift indices for a given year: CSImr = T̂ proj
mr −428

T̂ synth.model
mr , which gives for each bin the difference in the frequency of this degree-429

day in the projections with respect to the synthetic shape-preserving mean-shifted430

climate for each ESM.431

432

Appendix B. Köppen regions433

The Köppen region of use are:434
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Figure 6. : Köppen climatic zones.
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E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Rad-472

noti, P. De Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thépaut.473

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological474

Society, 146(730):1999–2049, July 2020. ISSN 0035-9009, 1477-870X. doi:475

10.1002/qj.3803.476



24

G. Heutel, N. H. Miller, and D. Molitor. Adaptation and the mortality effects477

of temperature across us climate regions. Review of Economics and Statistics,478

103(4):740–753, 2021.479

S. Hsiang. Climate econometrics. Annual Review of Resource Economics, 8:43–75,480

2016.481

K. Kornhuber, C. Lesk, C. F. Schleussner, J. Jägermeyr, P. Pfleiderer, and R. M.482
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