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Abstract

To what extent does regional economic activity shape regional climate impacts? Land

use land cover (LULC) changes with regional economic activity through agricultural and

urban land demands. At the regional scale, LULC changes affect climate impacts through

changes in albedo, evapotranspiration and roughness length, i.e. biophysical channels.

These spatially heterogeneous regional feedbacks have so far been neglected in the quan-

titative spatial literature assessing the economic consequences of climate change. Indeed,

the literature focuses on the biogeochemical channel from global carbon concentration.

Accounting for this additional biophysical feedback between regional economic activities

and regional climate change yields important welfare implications for both adaptation

and mitigation, as the biophysical feedbacks change temperature impacts and interact

with regional adaptation decisions. I build a dynamic-spatial sectoral equilibrium model

to understand the impact of this omitted nonlinear physical mechanism and take the

model to the data at the global gridded 1° resolution to quantify its magnitude along

‘middle-of-the-road’ SSP2-4.5 with agents that adapt to climate impacts through migra-

tion and trade. I leverage recent advances in the climate adaptive response literature

to estimate model-consistent dose-response functions of regional amenities and sectoral

productivities to regional annual distributions of daily mean surface temperatures from

the equilibrium conditions of the model. Im my baseline SSP2-4.5 simulation, without

biophysical impacts, almost all locations experience negative welfare changes from non-

linear regional intra-annual warming patterns interacted with nonlinear binned damage

patterns: there are no benefits to be expected from climate change in the Northern

Hemisphere. Adding biophysical channels, i.e. a non-linear and time-varying downscal-

ing from global to regional temperature distributions, accounts for 2.4% of the aggregate

biogeochemical welfare impacts of climate change. Both biogeochemical and biophysical

climate impacts are regressive, decreasing with 2015 income per capita levels.

Keywords: environmental policy, spatial integrated assessment models, endogenous

adaptation, land use land cover, albedo, evapotranspiration, roughness, downscaling.
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1 Introduction

‘Any local land changes that redistribute energy and water vapour between the land and the

atmosphere influence regional climate (biophysical effects, high confidence)’ (IPCC).

Uncertainties about changes in land conditions originating from anthropogenic land

uses have become a major concern, as highlighted by IPCC in its 2019 special report

on climate change and land (Masson-Delmotte et al., 2019). Changes in land condi-

tions have for instance a major impact on biodiversity and contribute to global climate

change through carbon releases or by reducing land carbon storage potential. But in

this study, I focus on the regional biophysical climate impacts of changes in regional

land conditions. These biophysical impacts are not driven by carbon emissions but by

changes in albedo, evapotranspiration and soil roughness, which can reduce or accen-

tuate regional warming (Georgescu et al., 2011; Alkama and Cescatti, 2016) depending

on the location and season (Duveiller et al., 2018b).

To my knowledge, economists usually omit these mechanisms in their assessments

of climate impacts: they focus on the biogeochemical channel of global carbon emis-

sions. For instance, in the burgeoning field of spatial integrated assessment modelling

(Desmet and Rossi-Hansberg, 2024), regional temperatures at location r and time t are

inferred from global average temperatures through statistical downscaling, also called

pattern scaling (Santer et al., 1990). As depicted in Fernández-Villalverde et al. (2024),

pattern-scaling suggests a simple functional relation such as: Tt(r) = f(TA
t ) + ηt(r),

where local temperature Tt(r) at grid cell r and time t is a response to global average

temperature TA
t indicated by f(.) and a stochastic local residual temperature variabil-

ity term ηt(r). The stochastic process that determines the distribution of local residual

ηt(r) is assumed to be stationary and exogenous to regional economic activities. In this

work, I reconsider these two assumptions. As our understanding of the mechanisms

through which human activities and climate impacts interact goes to finer spatial reso-

lution, I investigate the heterogenous endogenous dynamic biophysical regional impacts
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and their interactions with adaptation and economic decisions. I quantify how much

the regional biophysical channels driven by land use land cover (LULC) changes matter

along ‘middle-of-the-road’ Shared Socioeconomic Pathways (SSP) 2-4.5.

Human-induced LULC changes affect regional climate through three key biophys-

ical channels: change in albedo, change in evapotranspiration and change in surface

roughness length. Albedo is the fraction of solar radiation reflected by a surface.

Evapotranspiration is the combined process of evaporation from the Earth’s surface

and transpiration from vegetation. Roughness length refers to the measure of a sur-

face’s roughness, which influences how air moves above that surface. Surfaces with less

albedo, e.g. because of urbanization, absorb more solar radiation which leads to higher

temperatures as more solar energy is converted to heat in these areas. Evapotranspira-

tion decreases in a given location, e.g. because of deforestation, mean that less water

is evaporated from surfaces, requiring less energy to change state from liquid to gas

while this energy is usually drawn from the environment, cooling both the surface and

the surrounding air. The decrease in evapotranspiration can thus bring regional tem-

perature increases. Rough surfaces, such as forests or areas with rugged topography,

can slow down air movement, thereby promoting the cooling of local temperatures.

Smoother agricultural and urban areas, on the other hand, can reduce frictional drag

on the air, allowing warmer air from surrounding regions to flow into these areas.

These three biophysical mechanisms are affected by changes in physical land surface

characteristics, especially human-driven land use land cover changes: there are regional

feedbacks between human activity and these biophysical channels. The two key human

drivers that I study here are changes in agricultural and urban land demands.

The biophysical channels matter for climate economics for two main reasons. First,

there are heterogeneous LULC changes to be expected around the world depending on

current LULC, future economic growth, structural change, demography and climate

impacts. Second, these biophysical channels interact with adaptation decisions. For
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instance, population concentration in areas that are less affected by climate impacts

drives urban land demand and changes in regional biophysical impacts that can re-

duce the aggregate benefits of migration and change the distributional impacts of the

climate burden between regions. This might matter if climate change and population

growth have their most damaging effects in similar places (Henderson et al., 2024). Het-

erogeneous climate impacts and economic dynamics in different regions of the world

and in different sectors are driving changes in sectoral specializations, for example by

shifting the optimal climate zones for agricultural activities or changing relative prices.

These changes in sectoral specialization come with changes in agricultural land extent

which have biophysical impacts. The biophysical channels might reduce or increase the

benefits of regional adaptation expected from structural change.

There are large heterogeneities in the impacts of these biophysical feedbacks, both

physical and socioeconomic. On the one hand, there are spatial and temporal hetero-

geneities in the biophysical mechanisms. Indeed, observations show that biophysical

channels do not have the same impact over different periods of the year (Duveiller

et al., 2020). Furthermore, biophysical channels can vary in sign and magnitude de-

pending on regional background climate (Duveiller et al., 2018b): land use changes,

for instance from forest to grassland, bring conflicting changes in albedo (increase)

and evapotranspiration (decrease). These conflicting changes may lead to cooling or

warming depending on which process dominates, which depends on local climate back-

ground. Huang et al. (2020) explore this spatial heterogeneity within Europe. On the

other hand, there are large spatial and temporal heterogeneity in the socio-economic

drivers of land use land cover changes bringing biophysical impacts, because there are

various land use land covers today and future land use land cover changes. Different

paths of urbanization are to be expected in different parts of the world, depending on

demography, economic growth and climate impacts, among others drivers (UN World

Urbanization Prospects). Different paths of agricultural land use land cover changes
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will also occur depending on structural change, food needs and heterogeneous impacts

of climate change on agricultural yields, etc. (Future of Food and Agriculture, UN

FAO). The interaction between these sources of spatial and temporal heterogeneity,

both biophysical and socioeconomic, might even increase the divergence between dif-

ferent locations over the world.

In this paper, I estimate the aggregate and distributional welfare impacts of the

biophysical channels of climate impacts along SSP2-4.5. First, I match LULC scenario

from LUMIP MESSAGE-Globiom along SSP2-4.5 with Duveiller et al. (2018b) and

Zhou et al. (2022) gridded estimates of the historical impact of LULC changes on daily

mean daytime and nighttime land surface temperatures. More specifically, I compute

the mean impact over thirteen Köppen-Geiger climate zones as the regional biophysical

feedbacks depend on background climate. I then use a gridded linear relation between

daytime and nighttime land surface temperatures and daily mean surface temperature

(Hooker et al., 2018), a metric adapted to the measure of climate impacts on economic

activities. This procedure allows me to build a reduced-form representation of the

regional biophysical feedbacks that can be projected using anticipated gridded changes

in Köppen-Geiger zones along SSP2-4.5 (Beck et al., 2023) and changes in LULC.

I build a two-sectors (agricultural sector and all other sectors), dynamic quantita-

tive spatial equilibrium model (Eaton and Kortum, 2002; Redding and Rossi-Hansberg,

2017) where locations differ in regional annual distribution of mean daily surface tem-

perature, sectoral productivities, amenities, bilateral trade and migration costs. Pro-

ductivities represent features that make different regions more or less attractive in terms

of the costs of production, which may include natural advantages (such as proximity of

natural resources) or induced advantages (such as infrastructure). Regional amenities

capture characteristics of each location that make them more or less desirable places

to live. Workers in each location have preference for regional amenities and consume a
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variety of horizontally differentiated goods. They experience idiosyncratic preference

shocks. Workers are mobile across locations but face time-invariant migration costs.

Their migration decisions are simplified a la Desmet et al. (2018) to make the 1° grid-

ded model tractable. I use Caliendo et al. (2019); Kleinman et al. (2023) dynamic exact

hat algebra technique that avoids the shortcomings of regional fundamental amenities

estimation. Finally, firms face monopolistic competition without intermediate inputs

in the production as in Conte et al. (2021), with time-invariant and symmetric bilat-

eral trade costs that are not sector-specific, and without trade imbalances. I solve the

model under the assumption of a stationary equilibrium.

The simulations are done under exogeneous biogeochemical climate change with

projections of future distributions of daily mean temperatures taken from the average

of bias-adjusted (Lange, 2019) and down-scaled SSP2-4.5 CMIP6 experiments of four

Earth System models (ESM) (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-

ESM2-0) with the assumption of 2015 fixed land use. Biophysical impacts are added to

these exogeneous projections with the implicit assumption of a shape-preserving mean

increase in the annual distribution of daily mean temperatures. I could compare these

simulations to CMIP projections with exogenous land use change scenarios, but this

would lump the two biophysical and biogeochemical effects of land use change together:

a change in land use in an ESM leads to a biogeochemical impact via the global carbon

cycle (e.g. carbon releases from deforestation), which is not disentangled from the bio-

physical impact. An important work is done by the LUMIP platform (Lawrence et al.,

2016) to disentangle these future land use impacts, especially for deforestation, e.g. in

Boysen et al. (2020). But these studies treat the various biophysical impacts in silo,

or model them along exogenous scenarios of population, trade, sector specialization,

without modeling the endogenous reaction of agents to climate impacts as in the recent

quantitative spatial literature (Cruz and Rossi-Hansberg, 2024).

I follow Rudik et al. (2022) and use the equilibrium conditions of the theoretical
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model to compute model-consistent dose-response function of regional amenities and

sectoral productivities to distortions in the annual regional distribution of daily mean

temperatures. The intuition behind this estimation approach is that changes in migra-

tion and trade flows allows ceteris paribus to identify changes in amenity and sectoral

productivity levels. As the dose-response functions are estimated from the equilibrium

conditions of the theoretical model, the simulation results reflect the actual welfare

impacts of climate change given the model’s assumptions regarding macroeconomic

dynamics and adaptation decisions. I combine ERA-5 climate reanalysis (Hersbach

et al., 2020) of the population-weighted country-level annual distribution of daily mean

temperatures with BACI CEPII and Abel and Cohen (2019) datasets on trade and mi-

gration flows at the country level. Focusing on the whole shape of the intra-annual

distribution of daily mean temperatures rather than an arbitrary moment such as the

mean annual temperature (Fillon et al., 2024) allows to capture more complex changes

in the high-dimensional temperature vector. The temperature bins allows to capture

some of the non-linearity in the climate impacts (Burke et al., 2015).

To what extent does regional economic activity shape regional climate impacts?

My quantitative estimation of the biophysical channels of climate change under SSP2-

4.5 proceeds in two steps. First, I estimate the aggregate and distributional welfare

impacts of the SSP2-4.5 scenario, considering only the carbon cycle—i.e., I ignore the

impact of regional economic activity on regional climate change. Then, I assess the

aggregate and distributional impacts of SSP2-4.5 with the addition of biophysical chan-

nels. Two key conclusions emerge from the first step, where I estimate the baseline

impacts of biogeochemical climate change. First, climate change impacts are nega-

tive for most regions: by accounting for intra-annual warming patterns and non-linear

damage patterns across temperature bins, I find no evidence of benefits from warming

in the Northern Hemisphere. The aggregate welfare impact of SSP2-4.5 is, however,

6



consistent with existing literature; most impacts are driven by the non-linear effect

of temperature distortions on sectoral productivities. Second, biogeochemical climate

change is regressive: the magnitude of welfare changes under SSP2-4.5 is inversely

related to initial income levels in 2015. In the second step, I estimate the impact of

biophysical channels. From my simulations, two conclusions arise. First, regional eco-

nomic activity does indeed influence regional climate impacts and the corresponding

welfare changes. On average, this additional biophysical effect accounts for 2.5% of the

biogeochemical impacts estimated in the first step. Second, the biophysical impacts

vary across both time and space. This heterogeneity is, first, socioeconomic: it depends

on scenarios of urban land-use change and the net transitions of shrublands and forests

into croplands. It is also climatic: the effect of biophysical channels depends on the

climate zone in which a location is situated (e.g., arid, temperate, etc.), with these

classifications shifting over time due to global climate change. For some biophysical

channels, this heterogeneity is also seasonal, which further strengthens the case for

considering the intra-annual distribution of temperatures in the study of climate im-

pacts. In my simulations, I find that most locations experience a negative impact from

biophysical channels on welfare under SSP2-4.5. Like the biogeochemical impacts, the

biophysical effects are regressive relative to 2015 income levels.

I contribute to three main strands of economic literature. First, I contribute to the

growing literature in climate economics using dynamic spatial quantitative equilibrium

model to measure the impacts of climate change under endogenous and regional adap-

tation (Krusell and Smith Jr, 2022; Cruz and Rossi-Hansberg, 2024). In comparison

with these spatial integrated assessment models, I do not assume a time-invariant ex-

ogenous linear relation between global climate change and regional climate impacts.

Indeed, downscaling from global to regional climate change cannot be considered as

stable across time and space: it is not exogeneous to our regional economic activities.
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Averaging over multiple deterministic draws taking the whole scientific information

into account, e.g. similar to work of Desmet et al. (2018) on sea level rise but in ap-

plication to parametric uncertainty over regional transient climate response to global

cumulative emissions, would not allow to capture these nonlinear biophysical mech-

anisms. Thus, in addition to non-linearities in climate impacts, largely documented

since seminal work from Schlenker and Roberts (2009); Burke et al. (2015), i.e. non-

linearity in the mapping from a given summary statistics of regional climate change to

economic impacts on amenities and productivities, I add physical non-linearities in the

mapping from global climate change to regional climate change via endogenous LULC

changes. Another venue in this literature is to use actual climate projections (Rudik

et al., 2022; Bilal and Rossi-Hansberg, 2023) but this implies that LULC are either

assumed time-invariant, or that the biophysical channels of LULC are entangled with

their biogeochemical impacts.

Second, I contribute to the literature modelling adaptation which has developed in

response to the Lucas critique adressed to the standard climate-economy models (Nord-

haus, 2008; Barrage and Nordhaus, 2024): in comparison with previous approaches, I

study how adaptation decisions might interact with climate impacts. Thus, I relate

to the literature on stuctural transformation under a changing climate (Conte et al.,

2021; Albert et al., 2021; Nath, 2022) and urbanization and their interaction with

LULC changes (Michaels et al., 2012; Ahlfeldt et al., 2015; Coeurdacier et al., 2022;

Eckert and Peters, 2022). I quantify the impact of these sectoral specialization and

urbanization changes on regional climates via biophysical mechanisms.

Third, I contribute to the literature studying the interactions betweeen economic

activity, land uses and climate impacts. This literature usually focuses on forest covers

(Grosset et al., 2023) and micro-scale impacts, for instance health impacts related to

urban heat island (Manoli et al., 2019). I extend this literature in three directions: I

consider various transitions in land uses (transition from forests to croplands, transition
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from shrublands to croplands, transition from non-impervious to impervious surfaces),

at the global scale (around 13000 gridded locations) and with larger regional impacts

at the 1° gridded resolution, in response to climate scientists’ concerns that biophysical

impacts are not solely local (Duveiller et al., 2018b; Chakraborty and Qian, 2024).

2 Motivation

2.1 Regional biophysical channels and their impacts

2.1.1 Impact of regional agricultural land demand on regional climate

Changes in agricultural LULC have heterogeneous impacts on regional climates and

depending on the season. Duveiller et al. (2018a) provide gridded estimates of cli-

mate impacts stemming from regional transitions from and to croplands at 1° spatial

resolution. While the authors also provide estimates for grasslands, they do not differ-

entiate between rangelands grazed by domestic livestock and other uses. I thus focus on

changes in croplands without considering pastures. I compute the mean temperature

impact of these land transitions over Köppen-Geiger climate zones because biophysi-

cal impacts depend on regional climate backgrounds (Duveiller et al., 2020). In table

(1), I give the distribution of change in mean daily surface temperature observed for

two LULC transitions in all Köppen-Geiger climatic zones: transition from forests to

croplands and transition from shrublands to croplands. I convert daytime and night-

time land surface temperatures to mean two-meters surface temperature using gridded

linear relations uncovered in Hooker et al. (2018).
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Koppen-Geiger climate zone Forests to Croplands Shrublands to Croplands

Arid, desert - / - 0.0108/0.0169°C

Humid continental 0.0078/0.0015°C -0.0102/0.0018°C

Humid subtropical 0.002/0.0017°C 0.0046/-0.0021°C

Mediterranean 0.0029/0.0003°C - / -

Mediterranean continental -0.0087/0.0007°C -0.0007/-0.0025°C

Oceanic -0.0013/-0.0038°C 0.0098 / - °C

Semi-Arid -0.0015/0.0013°C 0.0043/0.009°C

Subarctic -0.0037/0.0005°C -0.0048/0.0028°C

Tropical, Monsoon 0.0022/0.0001°C 0.0032/-0.0033°C

Tropical, Rainforest 0.0017/0.003°C 0.0043/-0.0079°C

Tropical, Savannah -0.0048/-0.0004°C 0.0026/0.0037°C

Tundra 0.0022/0.0104°C 0.0148/-0.0016°C

Table 1: Change in monthly (January/July for illustration) mean daily surface tem-
perature (in °C) for various Köppen-Geiger climatic zones for a 1% absolute change in
land use for two net transitions of interest: from forests to croplands, from shrublands
to croplands. 1% absolute change over 1° gridded regions represents around 123km2 at
Equator and 87km2 on the French mainland. Data is missing for some combinations.

2.1.2 Impact of regional urban land demand on regional climate

Changes in urban LULC have an impact on regional climates (Zhou et al., 2022). To

my knowledge, most studies focus on local urban heat islands effect in cities while I

refer to all global artificial impervious surfaces as these areas have temperature impacts

that go beyond local effects (Chakraborty and Qian, 2024). Past decades have seen

large changes in global artificial impervious surfaces. Zhou et al. (2022) give gridded

regional climate impacts of global artificial impervious surfaces extension at 50km x

50 km resolution. More specifically, the authors give the change in urbanization over

1985 to 2015 and the change in daytime and nighttime land surface temperature (LST)
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due to increase in urbanization over the same period. I convert daytime and nighttime

LST to mean two-meters surface temperature using Hooker et al. (2018). I compute

the mean impact over Köppen-Geiger climate zones because I expect the impact to

depend on regional climate background as for urban heat islands (Zhao et al., 2014).

In table (2), I give the distribution of annual mean daily temperature changes from a

1% increase in impervious surfaces.

Mean change Koppen-Geiger climate zone

0.0077°C Arid, desert

0.0096°C Humid continental

0.0115°C Humid subtropical

0.0103°C Mediterranean

0.0083°C Mediterranean continental

0.0106°C Oceanic

0.0076°C Semi-Arid

0.0068°C Subarctic

0.0108°C Tropical, Monsoon

0.0077°C Tropical, Rainforest

0.0123°C Tropical, Savannah

0.0114°C Tundra

Table 2: Change in annual mean daily surface temperature (in °C) for various Köppen-
Geiger climatic zones for a 1% absolute change in impervious surfaces over 1° gridded
regions, i.e. around 123km2 at Equator and 87km2 on the French mainland.

In order to use these estimates for simulations using distributions of daily mean

temperatures, I make two assumptions. First, I assume homogeneity in the shift in

distribution of daily mean temperatures within each year (urban land) and each month

(croplands). Second, I assume that the change computed for each Köppen-Geiger zone

holds in the future under changing climate for the same climatic zone.
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2.1.3 Köppen-Geiger climates

I plot the 2015 distribution of Köppen-Geiger climate zones.
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Figure 1: 13 Köppen-Geiger climate reference regions in 2015.

According to Beck et al. (2023), 8% of current land surface will transition to another

Koppen-Geiger region along SSP2-4.5. Thus, I can not use fixed current Koppen-Geiger

zone while the sign and magnitude of the biophysical channel stemming from land use

land cover changes depend on it. I use Beck et al. (2023) data to project in which

Köppen-Geiger zone each 1° grid cell will be along SSP2-4.5. Regions that change

affiliation between 2015 and 2100 are:

12



-50

0

50

-100 0 100
Longitude

La
tit

ud
e Along SSP2-4.5

Not changed

Changed

Figure 2: 1° locations who change Köppen-Geiger classification between 2015 and 2100
under SSP2-4.5.

2.2 Impact of economic activities on LULC changes

Once I have retrieved these estimates linking LULC to biophysical impacts, I map

changes in economic activities to LULC changes. In table (3), I give summary statis-

tics for the distribution of cumulative net transitions from forests to croplands, from

rangelands1 to croplands, from non-impervious to impervious surfaces from 2015 to

2100 under SSP2-4.5 in MESSAGE-Globiom (Hurtt et al., 2020), stored on the LU-

MIP platform.

1As a first approximation, I assume that biophysical channels estimated in Duveiller et al. (2018b)
for generic shrublands applies to the MESSAGE Globiom category of rangelands that does not include
domestic pastured grasslands. I could disentangle further between savannas and shrublands.
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Quantiles Forests to croplands Rangelands to croplands Non-urban to urban

0% -56.88 -27.19 -4.65

20% -0.49 0.00 0.00

40% 0.19 0.01 0.03

60% 1.01 0.17 0.13

80% 3.60 0.83 0.51

100% 63.96 43.36 19.19

Table 3: Cumulative net change (as a share of total cell extent, in %) between 2015 and
2100 in LUMIP MESSAGE-Globiom SSP2 4-5 for the 1° gridded locations used in the
simulations, from forests to croplands (left), from rangelands to croplands (middle),
from non-impervious to urban impervious surfaces (right).

Interacted with biophysical changes from tables (1) and (2), these LULC changes

have a heterogeneous impact on the future annual distributions of daily mean tem-

peratures around the world and over time. These dynamic biophysical impacts affect

the future distribution of economic activities, populations and welfare throughout the

world in a way that is omitted from estimates of climate change impacts of the quantita-

tive spatial literature that uses time-invariant linear temperature down-scaling. Model

that use projections from CMIP6 earth system models either assume fixed land use or

use projections forced with direct human forcing such as land use changes which do

not differentiate between the various channels by which land and other elements of the

SSP affect climate, e.g. the specific biophysical channels that we study here.

I have retrieved estimates linking economic activity to heterogeneous biophysical

impacts at the regional scale via changes in agricultural and urban land demands. I

build a spatial sectoral equilibrium model to understand how these regional feedbacks

interact with standard biogeochemical climate impacts and regional adaptation deci-

cisions. I quantify how these dynamic mechanisms shape the distribution of economic
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activity, population and climate impacts along SSP2-4.5.

3 Theoretical Model

3.1 Households

3.1.1 Preferences and migrations

Period utility of a worker j who resides in location r at t is multiplicative in four

elements: the level of regional amenities at(r) that captures how valuable living in

a given location is other things being equal, the consumption of goods Ct(r), an

individual-specific idiosyncratic preference shock ϵjt , drawn from a Fréchet distribu-

tion (i.i.d. across locations, individuals, and time) with a shape parameter that equals

the elasticity of migration to real income, and the cost of migrating from location r in

period s - 1 to a location r in period s.

U j
t (r) = at(r)Ct(r)ϵ

j
t(r)Π

t
s=1m(rs−1, rs)

−1 (1)

Dynamic migration decisions are simplified to static decisions as in Desmet et al.

(2018), so that: m(s, r) = m1(s)m2(r) and m(r, r) = 1, i.e. there is no cost to staying

in the same place and the utility discount from migration is the product of origin

and destination-specific discounts. This yields that m2(r) = 1/m1(r), i.e. the cost of

entering a location is fully compensated by the benefit from leaving. This symmetry

assumption allows to reduce the dimension of my spatial dynamic migration problem

with many locations and makes it tractable at the global 1° gridded scale with standard

resolutions methods.
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3.1.2 Consumption and income

I assume a Cobb-Douglas preference structure between goods and a Spence-Dixit-

Stiglitz preference structure between horizontally differentiated varieties for each good,

with 1/(1 − ρ) the elasticity of substitution between goods. I assume ρ > 1 in my

setting, so that varieties are substitutes. χi is the fixed share of good i in the worker’s

expenditure. Consumption of goods at time t in location r writes:

Ct(r) = ΠK
k=1

[∫ 1

0

ckωt (r)ρdω

]χi
ρ

(2)

Workers in location r supplies one unit of labor inelastically and receive wage wt(r)

in location r and sector k in which they live in period t so that total income is: yt(r) =

Lt(r)wt(r)/
(
Πk∈KP

k
t (r)

χk
)
where Πk∈KP

k
t (r)

χk
is the ideal price index over K sectors.

There is no money lending, so every period agents fully consume their income and

Ct(r) = yt(r). In each location, there is immobile and non-accumulating capital which

I call regional sectoral structures Hk
t as in Caliendo et al. (2019). Hk

t is assumed to be

fixed over time and generate a rent that is fully used to maintain these structures.

3.1.3 Regional amenities

Following Desmet et al. (2018), idiosyncratic non-weather time-invariant fundamental

regional amenities āt(r) are affected by congestion, with Lt(r) the population in lo-

cation r at time t and λ the congestion elasticity of amenities to population density.

Following Rudik et al. (2022), regional amenities at(r) are multiplicatively separable

in a weather component exp(f [Tt(r); ζa]), where Tt(r) is a vector of weather variables

that summarizes the high-dimensional climate, f an arbitrary function taken over this

distribution (e.g. orthogonal polynomials, cubic splines) and ζa the set of parame-

ters to be estimated that governs how the weather vector affects regional amenities

non-linearly. In my benchmark estimation for ζa, I use third-degree orthogonal poly-
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nomials for smoothing across the annual distribution of daily mean temperatures with

1°C temperature bins. Regional temperature is a function of the biogeochemical cycle,

taken from exogeneous SSP projections, and the biophysical channel driven by endoge-

nous LULC changes. Regional amenity writes: at(r) = āt−1(r)Lt(r)
−λexp (f [Tt(r); ζa]).

Desmet et al. (2018) show that ut(r) = at(r)yt(r) fully summarizes how individuals

value the amenity and production characteristics of a location. But uncovering the

initial distribution of non-weather time-invariant amenities āt(r), i.e. what makes a

location attractive irrespective of economic activity, is challenging2. I use Caliendo

et al. (2019)’s dynamic exact hat algebra approach to get around this issue.

3.1.4 Dynamic exact hat algebra and population dynamics

Following Desmet et al. (2018), the share of the population in location r that moves to

location s from t-1 to t among all possible locations N is:

µt(rs) =
ut(s)

1/Ωm2(rs)
−1/Ω∑

n∈N ut(n)
1/Ωm2(rn)−1/Ω

(3)

Following Caliendo et al. (2019) and Balboni (2019), I write the change in the

bilateral matrix of migration flows in dynamic exact hat algebra:

µ̇t+1(rs) =
µt+1(rs)

µt(rs)
=

u̇t+1(s)
1/Ω∑

n∈N µt(rn)u̇t+1(n)1/Ω
(4)

And, as the idiosyncratic non-weather dependent part of regional amenities are

constant in time: u̇t+1(r) = ẏt+1(r)L̇t+1(r)
−λexp [f(Tt+1(r), ζa)− f(Tt(r), ζa)]. Once I

have migration flows, I build population dynamics for each location, accounting for

exogenous birth and death rates from SSP projections without migrations. In compar-

ison with Cruz (2021), I do not model endogenous fertility and death rates. Population

2Attempts include Desmet et al. (2018), who use model inversion to recover these initial amenities
with subjective well-being survey from the Gallup World Poll, and Cruz and Rossi-Hansberg (2024)
with Kummu et al. (2018)’s gridded data on reconstructed human development index.
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dynamics, with Lt(r) =
∑

k∈K L
k
t (r), writes:

Lk
t+1(r) = (bt+1(r)− dt+1(r))L

k
t (r) +

N∑
l=0,l ̸=r

∑
k∈K

µt+1(lrL
k
t (l)−

N∑
l=0,l ̸=r

∑
k∈K

µt+1(rl)L
k
t (r)

(5)

Thus, to recover the full dynamics of population under changing climate, I need

gridded projections for births and deaths rates along SSP2-4.5 without migration, a

guess for the change in utility, observed initial bilateral matrix of migration flows

µ0(rs), initial distribution of sectoral population Lk
0(r) and the gridded path of the

future annual distributions of mean daily temperatures. Then, period by period, I can

recover migration flows, without information on the initial distribution of non-weather

time-invariant regional amenities.

3.2 Production

3.2.1 Profit maximization

I assume that each 1° economy produces a continuum of varieties ω in sector k with a

Cobb-Douglas production technology. A firm produces qkωt (r) units of good from sector

k and variety ω in location r at t with technology qkωt (r) = zkωt (r)Lkω
t (r)µ

k
Hkω

t (r)1−µk

and constant returns to scale with two factors of production, regional sectoral struc-

tures and labour, Hkω
t (r) and Lkω

t (r). I assume away inter-sectoral intra-location trade,

i.e. intermediate inputs in the production function. zkωt (r) is a location-sector-variety

random variable drawn independently for each triplet (r, k, ω) from a Frechet distri-

bution: F kω
t (r) = exp

[
−Zkω

t (r)(z)−θk
]
. Firms are perfectly competitive. Taking all

prices as given, a firm producing variety ω of good in location r and sector k chooses

inputs to maximize static profits: Πkω
t (r) = pkt

ω(r)qkωt (r)−wt(r)L
kω
t (r)−Rt(r)H

kω
t (r),

where pkωt (r) is the price of variety ω of good produced and sold in location r and sector

k and input costs are not sector-specific. The unit price of an input bundle in location
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r, i.e. the marginal cost of production, with κk the sector-specific constants, writes:

xkt (r) = κk(wt(r))
µk
(Rt(r))

1−µk
. First-order conditions of the firm’s profit maximiza-

tion problem for sector k, time t and location r relate regional structure rents to wages

and sectoral labour employment levels Rk
t (r)H

k
t (r) = wt(r)

1−µk

µk Lk
t (r).

3.2.2 Regional productivities

As for amenities, productivity Z in each location r is multiplicatively separable in

a vector of weather variables, where Z̄ is non-weather base productivity : Zk
t (r) =

Z̄k
t (r)exp (g[Tt(r); ζz]). Non-weather productivity Z̄k

rt grows exogenously3 at a rate ϕ

that is not sector-specific. In each location, the vector of temperatures T depend on

both biogeochemical and biophysical channels. In hat algebra, productivity changes in

location i, sector k and time t write Żk
t+1(r) = ϕexp (g[Tt+1(r); ζz]− g[Tt(r); ζz]), where

ζz is a set of parameters to be estimated that govern how productivity changes non-

linearly across temperature bins and g an arbitrary function over the regional annual

distribution of daily mean temperatures Tt(r).

3.2.3 Trade, prices, market clearing

I use time-invariant iceberg trade costs τrs from location r to s among N locations.

The trade costs are not specific to sectors. Following Eaton and Kortum (2002), trade

shares write:

λkt (rs) =
Zk

t (s)
(
xkt (s)τ

k
rs

)−θk∑N
l Z

k
t (l)

(
xkt (l)τ

k
rl

)−θk
(6)

where λkt (rs) is the share of expenditures from region s and sector k in region r total

expenditures from sector k. The price index for industry k in region r is therefore, with

3Spatial diffusion models might not reflect how innovation spreads (Audretsch and Feldman, 1996).
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Γk a constant and 1 + θk > σk:

P k
t (r) = Γk

(
N∑
l=1

Zk
t (l)[x

k
t (l)τ

k
rl]

−θk

)−1/θk

(7)

Finally, market clearing at t in r means that labor income in sector k equals the

labor share of global expenditures from location r and sector k product: wt(r)L
k
t (r) =

χk
∑N

l λ
k
t (lr)

[
wt(l)L

k
t (l)
]
, with χk the share of goods from sector k in location’s ex-

penditures. Combining this equation for both sectors yield a clearing equation from

which guess on wage can be updated for the period equilibrium.

3.2.4 Production in exact hat algebra

In exact hat algebra, change in unit price of an input bundle is:

ẋkt+1(r) = (ẇt+1(r))
µk

(Ṙk
t+1(r))

1−µk

(8)

and from equation on rents I have that: Ṙk
t+1(r) = ẇt+1(r)

Ḣk
t+1(r)

L̇k
t+1(r) and Ḣk

t+1(r) = 1.

Finally, in dynamic hat algebra, change in price index writes:

Ṗ k
t+1(r) =

(
N∑
l=1

λkt (rl)Ż
k
t+1(l)[ẋ

k
t+1(l)]

−θk

)−1/θk

(9)

Change in trade flows writes:

λ̇kt+1(rs) =
Żk

t+1(s)
(
ẋkt+1(s)

)−θk∑N
l λ

k
t (rl)Ż

k
t+1(l)

(
ẋkt+1(l)

)−θk
= Żk

t+1(s)

(
ẋkt+1(s)

Ṗ k
t+1(r)

)−Θk

(10)

3.3 Estimation of dose-response functions

Climate impacts now come into play. They multiplicatively affect sectoral productivity

and amenities, thereby distorting market clearing and the distribution of populations
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and economic activities over time. I follow the insights of Eaton and Kortum (2002)

that trade flows contain information on productivity, and insights from Rudik et al.

(2022) that migration flows contain information on amenity value. I use the equilibrium

conditions of the model governing bilateral migration and trade flows to estimate im-

pact of regional climates on regional amenities and productivities. I follow a procedure

close to Rudik et al. (2022) with more countries, different datasets and relative levels

of temperature distributions winsoring rather than absolute temperature bounds. This

procedure guarantees internal validity of my estimates, i.e. model-consistent amenity

and productivity dose-response functions. Indeed, I leverage the model’s structure at

equilibrium, so that the non-linear dose-response functions account for the dynamic

and spatial interactions modelled in my framework. Finally, the estimates are more

robust to spatial autocorrelation than standard panel fixed-effect approaches.

3.3.1 Regional amenities

The intuition behind this estimation is that an observed change in bilateral migration

flows, controlling for changes in relative populations and outputs, migration costs and

country and time fixed effects, as well as differences in annual distribution of daily mean

temperatures between countries allows to identify nonlinear impacts of an additional

day in a temperature bin on amenity value. Indeed, the model at equilibrium yields:

log
(

µt(rs)
µt(rr)

)
= 1

Ω
log
(

āt−1(s)
āt−1(r)

)
− λ

Ω
log
(

Lt(s)
Lt(r)

)
+ 1

Ω
log yt(s)

yt(r)
+ 1

Ω
log(m(r, s)) + 1

Ω
(f(Tt(s), ζa)− f(Tt(r), ζa))

(11)

The left hand side is the ratio of households who move to location s (r, s) versus

stay in the original location r (r, r) from t-1 to t. The right side has five compo-

nents. The first component is the ratio of non-weather idiosyncratic amenities, that

are time-invariant and captured by a fixed effect in the regression. The second and third

components are the difference in population and output. The fourth component is the
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difference in migration costs, also time-invariant and captured by the origin-destination

fixed effect. Finally, I estimate the non-linear marginal impact of an additional day in

a temperature bin on amenity values, ζa, from f(Tt(s), ζa) − f(Tt(r), ζa). Arbitrarily,

I use a third-degree orthogonal polynomial smoothing across daily 1°C binned mean

temperatures for f. For the empirical estimation, I combine Abel and Cohen (2019)

data on five-years international migrations flows from 1990 to 2019 with World Bank

population and GDP per country estimates and Hersbach et al. (2020)’s climate reanal-

ysis (ERA5) for annual distributions of daily mean surface temperatures. I process the

climate reanalysis to aggregate it at the country level, weighting the 0.25° daily mean

temperature observations based on population weight in each country. The estimation

with Poisson Pseudo Maximum Likelihood and ψrs an origin-destination fixed effect,

is:

log
(

µt(rs)
µt(rr)

)
= − λ

Ω
log
(

Lt(s)
Lt(r)

)
+ 1

Ω
log
(

yt(s)
yt(r)

)
+ 1

Ω
(f(Tt(s), ζa)− f(Tt(r), ζa)) + ψrs + δt + ϵrst

(12)

with a congestion elasticity of regional amenities to population, λ = 0.32, taken

from Desmet et al. (2018). The regression is done on a distribution that is winsorized

at 95% so that the tails of the temperature distribution do not drive results.

Variable Coefficient p-value

First-Degree Orthogonal Polynomial -2.21e-03 3.84e-03
Second-Degree Orthogonal Polynomial -1.23e-03 3.26e-02
Third-Degree Orthogonal Polynomial -9.26e-04 2.30e-02

Wald test, joint significance 1.81e+01 4.20e-04

22



-0.002

-0.001

0.000

0.001

0 10 20 30

Temperature bin (1°C)

M
ar

gi
na

l e
ffe

ct

Figure 3: non-linear marginal effect (in %) of an additional day in the 1°C temperature
bin on regional amenities computed from regression (12) with 95% confidence intervals.
The regression is done with 95% winsorized bins [-2°C : 31°C] for 194.032 observations.
For the simulations, I assume that below and above these thresholds, marginal effects
remain constant.

In this dose-response function, estimates are for myopic households as my global

approach does not allow to solve a fully dynamic migration decisions for 12674 loca-

tions. This approach with myopic households might underestimate negative marginal

effects of low temperatures on regional amenities as shown in Rudik et al. (2022), which

might explain why the marginal effect of low temperature on regional amenity is posi-

tive. As suggested in Albouy et al. (2016) for US households, we find a positive effect

of moderate temperatures (around 18°C) on amenity value and large and increasing

negative value of excess heat on the amenity value, consistent with observations on

US data that households will pay more on the margin to avoid excess heat than cold.

Finally, as amenity values are infered from migration flows, a drawback of this estima-
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tion approach is that standard migration costs which are commensurable with changes

in amenity values cannot be distinguished from the impossibility of migrating, such as

administrative barriers, which are not. But I do not think that there is a reason to

believe that it specifically biases a temperature bin over another.

3.3.2 Regional productivities

I follow a close procedure for regional productivities. The intuition behind this estima-

tion is that an observed change in bilateral trade flows at the product level, controlling

for changes in relative input costs, trade costs, and country and time fixed effects, as

well as differences in annual distribution of daily mean temperatures between coun-

tries allows to identify nonlinear impacts of an additional day in a temperature bin on

productivity value for the specific product. At equilibrium, expenditures of region n

on industry k goods from region i write:

Xk
t (rs) =

(
Γk
)−θk Zk

t (s)(x
k
t (s))

−Θk
(τ kt (rs))

−Θk

(P k
t (r))

Θk Xk
t (r) (13)

Normalizing by importer’s own expenditures Xk
rr in industry k, using the expression

for Zk
it and taking the logarithm on both sides of the equation yields:

log
(

Xk
t (rs)

Xk
t (rr)

)
=
[
g(Tt(s); ζ

k
Z)− g(Tt(r); ζ

k
Z)
]
+ log

(
Z̄k
t (s)

Z̄k
t (r)

)
− θklog(τ kt (rs))− θklog

(
xk
t (s)

xk
t (r)

)
(14)

The left hand side is the ratio of expenditures on products of sector k from another

region i to expenditures on products of sector k produced domestically. In equilibrium,

it is equal to four terms. The first term on the right is the marginal difference in

productivity between i and n due to climate impacts. Arbitrarily, I use a third-degree

orthogonal polynomial smoothing across the regional annual distribution of daily 1°C

binned mean temperatures. The second term is the difference in productivity due to

non-weather fundamental differences. The third term are icerberg trade costs between
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i and n. The fourth term is the relative price of inputs. For the empirical estimation,

I combine BACI CEPII dataset for yearly sectoral international trade from 1995 to

2019 with World Bank population and GDP per country and sectors and Hersbach

et al. (2020)’s climate reanalysis (ERA5) for annual distributions of daily mean sur-

face temperatures at the country level. I process the climate reanalysis to aggregate

it at the country level, weighting the 0.25° daily mean temperature observations with

GHSL-POP population weights. I include tariffs in the fixed effects as data on tar-

iffs (preferential and most-favoured nation) and non-tariffs trade costs τ from WITS

database is very incomplete. I estimate the following regression with PPML:

log
(

Xk
t (rs)

Xk
t (rr)

)
= Ik ∗

[
g(Tt(s); ζ

k
Z)− g(Tt(r); ζ

k
Z)
]
+ ζXX

k
t + ρkt + ϕk

ni + ϵknit (15)

with ρkt sector-year fixed effects and ϕk
ni importer-exporter-sector fixed effects. With

Xt, I proxy for unobserved relative input costs with sectoral GDP per capita. Values

for θk are taken from Caliendo and Parro (2015). Estimates are done at ISIC Rev.3

product level and the sector-specific response functions come from a regression where I

interact the response function g with a set Ik of two sector dummy variables: agriculture

and non-agriculture. The sector-specific regression is done on a distribution that is

winsorized at 95%, so that the tails of the temperature distributions do not drive the

results.

Variable Coefficient p-value

First-Degree Orthogonal Polynomial - Agriculture 1.57e-02 2.81e-08
First-Degree Orthogonal Polynomial - Non Agriculture -2.02e-02 9.58e-02
Second-Degree Orthogonal Polynomial - Agriculture -3.20e-02 0.00e+00

Second-Degree Orthogonal Polynomial - Non Agriculture -2.22e-02 8.75e-04
Third-Degree Orthogonal Polynomial - Agriculture -1.70e-02 0.00e+00

Third-Degree Orthogonal Polynomial - Non Agriculture -2.07e-02 4.49e-03

Wald test, joint significance (Agriculture) 2.62e+02 0.00e+00
Wald test, joint significance (Non Agriculture) 3.01e+01 1.31e-06
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Figure 4: non-linear marginal effect of an additional day in the 1°C temperature bin
on regional sectoral productivities computed from regression (12) with 95% confidence
intervals and third-order orthogonal polynomials. The regression is done with 95%
winsorized bins [-2°C : 31°C] for N=14.527.500 observations. For the simulations, I
assume that below and above these thresholds, marginal effects remain constant.

As in Rudik et al. (2022), and consistent with previous literature (Burke et al.,

2015), I find substantial evidence of negative impacts from elevated mean daily tem-

peratures on sectoral productivity, affecting both agricultural and non-agricultural ac-

tivities. Surprisingly, the marginal effects are more pronounced in non-agricultural

sectors, even if confidence intervals are wider. Two factors may explain this finding.

First, I employ a winsorizing technique at 31°C computed from the temperature distri-

bution rather than an absolute threshold. This approach may wrongly reflect extreme

temperature effects on agriculture, particularly at very high temperatures, due to a

lack of sufficient observations. Second, since the analysis infers climate change impacts

on sectoral productivity from trade flows, the estimates are on products and people
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that are engaging in international trade. This might distort the estimated damage

since agricultural sectors involved in export may be more competitive and adaptable,

potentially underestimating the full extent of climate impacts. Related to this inter-

pretation, a limitation of my estimation approach is that it does not allow for the

estimation of dose-response functions for certain goods and services that are either

untraded or non-tradable, such as transportation, education, healthcare, real estate,

and local services like restaurants.

For agricultural sectors, I observe a bell-shaped relationship, with an optimal tem-

perature for productivity around 20°C, consistent with results such as those of Conte

et al. (2021). A key limitation in comparing my results to prior studies lies however

in the use of daily average temperature bins rather than annual averages, which alters

the form of temperature-productivity relationships. For non-agricultural sectors, I ob-

serve positive productivity effects for non-agricultural sectors on colder days (around

and below 0°C). This result might be related to the differentiated effects identified

by Burke et al. (2015), where wealthier countries—which might be disproportionately

represented in trade data for non-agricultural products—demonstrate a greater capac-

ity to adapt to lower temperatures. This distinction between rich and poor countries

in their responses to temperature variations could explain the observed resilience of

non-agricultural productivity to colder conditions.

4 Numerical results

4.1 Model resolution

Given the distribution of labor across markets Lt ≡ {Lk
t (r)}

N,K
r=1,k=0, location-industry

fundamental productivities Zt ≡ {Zk
t (r)}

N,K
r=1,k=0, location-specific fundamental ameni-

ties at ≡ {at(r)}Nr=1, I define a time-t momentary equilibrium as a vector of wages

wt ≡ {wt(r)}Nr=1 and aggregate price index Pt ≡ {Pt(r)}Nr=1 satisfying equilibrium
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conditions of the static multi-regional and multi-industry trade model. Let µ̇t ≡

{µ̇t(rs)}N,N,∞
r=1,s=1,t=1, ȧt ≡ {ȧt}∞t=1, u̇t ≡ {u̇t}∞t=1 be migration shares, amenities, and

lifetime utilities changes respectively. Given an initial allocation of labor Lk
0, initial

migration flows, initial sectoral trade flows, initial time-invariant exogenous funda-

mentals (migration costs, non-weather fundamental productivities and amenities, local

structures), and a path of time-varying exogenous fundamentals (amenities, produc-

tivities, land uses and climate change), I define a sequential competitive equilibrium

as a sequence of {Lt, µt, ut, wt}∞t=0 that solves the temporary equilibrium at each time

t. Finally, I define a stationary equilibrium as a sequential competitive equilibrium

such that the sequence {Lt, µt, ut, wt}∞t=0 is constant for every t. The intuition be-

hind this approach is that observed data (migration flows, wages) are a good proxy

for unobserved characteristics (migration costs, productivities) and that this observed

data provides sufficient information to bypass the estimation of some fundamentals,

for instance idiosyncratic non-weather regional amenities, to project future decisions

by agents that include the distribution of this unobserved characteristics.

Some more datasets are needed at 1° gridded level for the simulations. I use 2015

GHSL-POP gridded population distribution and population-weighted country-level es-

timates of the share of employment in labour from World Bank. Exogeneous produc-

tivity paths are taken from SSP database and downscaled to 1° zone for SSP2 based on

2015 population coverage. For productivity paths, I take the mean of two modelling

approaches for SSP2: OECD Env-Growth and IIASA. Population projections are taken

from KC et al. (2024) SSP2 projections without migration. I use Conte et al. (2021)

gridded sectoral initial bilateral sectoral trade flows. Agricultural and non-agricultural

wages are computed using Kummu et al. (2018) gridded estimates of GDP per capita

and population-weighted country-level estimates of the labour share of total income

from ILOSTAT.

The initial bilateral migration flows are computed from Kummu et al. (2018) and
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Abel and Cohen (2019): the gridded flows are constructed so that they match in-

ternational migration flows, and internal migrations are built from within-country

population-weighted net gridded migration stocks. There are two main issues with

the modeling of migrations. First, when migration are fully dynamic, models cannot

be solved at both global scale and fine resolution, while it would be useful to keep

both characteristics. Applications with fully dynamic decisions (Caliendo et al., 2019;

Balboni, 2019; Rudik et al., 2022) are for a subset of countries4. A second issue re-

garding migration dynamics is data availability at the right resolution: data is scarce,

especially outside the USA. I keep a worldwide resolution (Cruz and Rossi-Hansberg,

2024) rather than restricting the analysis to the USA (Caliendo et al., 2019; Bilal

and Rossi-Hansberg, 2023) or subset of countries for which rich migration data are

available (Rudik et al., 2022). I reconstruct gridded migration flows from both in-

ternational migration flows and gridded net migration stocks in a simplistic way that

probably underestimate them but this first-order and fully explicit approximation relies

on best-available gridded data products (Kummu et al., 2018; Abel and Cohen, 2019)

and can be checked for robustness. Another avenue would be to invert the model to re-

cover fundamentals such as migration costs, but it is also based on important modelling

assumptions regarding the estimation of regional fundamental amenities.

4.2 Counterfactual climates and policies

To evaluate the aggregate welfare consequences of global warming and the welfare

consequences of the biophysical channels, I compare at the gobal scale the present

discounted value of regional utilities that are not idiosyncratic, namely,

W0 =
∑
r∈N

∞∑
t=0

βtu̇t+1(r) =
∑
r∈N

∞∑
t=0

βtȧt+1(r)ẏt+1(r) (16)

4Recent advances include using deep neural networks (Azinovic et al., 2022) or perturbation ap-
proaches (Bilal and Rossi-Hansberg, 2023) could allow to keep both fully dynamic decisions and global
1° gridded approach. I leave work on these methodologies for future research.
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In my approach, as in Cruz and Rossi-Hansberg (2024), I thus focus on changes in

how individuals value the amenity and production characteristics of a location under

changing climate. A drawback of this choice, discussed in Desmet et al. (2018), is

that the welfare cost computed does not include two components: the mobility costs

incurred to get there and the idiosyncratic preferences of individuals who live there.

I simulate the model in three alternative settings.

Simulation 1 - without climate change In this first benchmark simulation, I

compute the distribution of future sectoral economic activities, population and trade

flows that clear markets in each location at all future periods under the assumption

that there is no climate change, i.e. no deviation in the annual distribution of daily

mean temperatures in each location. This simulation is used as a baseline.

Simulation 2 - under biogeochemical SSP2-4.5 In the second simulation, I

use bias-adjusted (Lange, 2019) and down-scaled projections from five CMIP6 Earth

System Models forced with SSP2-RCP4.5 emissions under the assumption of fixed

2015 land use: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0. More

specifically, I construct a synthetic annual distribution of daily mean temperatures

for each 1° location taking the average over five years. Thus, I can have a better

proxy of the underlying climate distribution from which weather from a given year is

drawn and capture some internal variability in climate, for instance due to El Niño. I

compute the distribution of future sectoral economic activities, population and trade

flows that clear markets in each location at all future periods under these nonlinear

deformations in the annual distributions of daily mean temperatures in each location.

The deviation between this simulation and the first one allows to compute the aggregate

and distributional welfare impact of exogenous biogeochemical change along SSP2-4.5.

Simulation 3 - under both biogeochemical and biophysical SSP2-4.5 In

the third simulation, I add the biophysical impacts driven by urban and agricultural
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land demands to the exogenous biogeochemical projections, using the mapping between

LULC changes and biophysical impacts that applies in this specific 1° Koppen Geiger

climate zone at a given time period. The distribution of daily mean temperature in

year t is the sum of exogeneous SSP2-4.5 scenarii and biophysical channels over each

month within a year (net transitions to croplands) and over a year (transitions to urban

areas). The comparison between this simulation and the second one allows to compute

the aggregate and distributional welfare consequences of biophysical channels.

4.3 Benchmark biogeochemical climate impacts (SSP2-4.5)

First, I plot on the left graph of Figure (5) the 2100 future climate under SSP2-4.5

with respect to the 2015 distribution of temperatures, treating each location as a unit.

The distortion of annual daily mean temperature distributions is less pronounced than

in SSP5-8.5 or equivalent carbo-intensive pathways previously assessed (Cruz, 2021;

Krusell and Smith Jr, 2022). Indeed, annual average temperature increases only from

15°C in 2015 to 17.3°C in 2100, i.e. a 2.3°C increase in mean annual surface temperature

over our gridded locations of interest. On the right graph on Figure (5), I compare

two shifts in the global intra-annual distribution of daily mean temperatures between

2015 and 2100. In red, I plot the difference in the frequency of a given mean daily

temperature in the annual distribution using actual climate projections, i.e. I show

how more frequent a given temperature is on average at the annual scale and over all

locations in 2100 climate in comparison with 2015 initial climate conditions. In green,

I apply a shape-preserving shift in annual mean to the 2015 distribution in blue on

the left graph: I add to each mean temperature bin in 2015 the mean global annual

difference between 2015 and 2100 in climate projections. This shift is approximate

and illustrative as I round this shift again to match it to climate projections. These

graphs show that even when aggregated to the global level, there are large changes

in the shape of the intra-annual distribution of daily mean temperatures that are not
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perfectly summarized by the annual mean deviation. This non-linearity is accounted

for in our approach where we use the whole distribution of daily mean temperature to

estimate climate impacts from the equilibrium conditions of the model and simulate

their welfare consequences along our scenario.
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Figure 5: Left Synthetic global annual distributions of daily mean temperatures in
2015 (in blue) and 2100 (in red), under SSP2-4.5, for all gridded locations studied in
the paper. Dotted lines represent average annual mean surface temperature. I treat
each location as one unit. Right Shifts from 2015 to 2100 in the frequency of daily
mean temperatures per temperature bin (in number of days) for climate projections
(in red) and for a synthetic shape-preserving approximate annual mean shift where the
annual mean increase observed between the two distributions 2015 and 2100 is added
to each bin in the 2015 distribution.

I analyze both the aggregate and distributional welfare effects of climate change

under the SSP2-4.5 scenario, focusing on locations where data is available (e.g. Libya

is excluded due to missing data) and where population and economic activity were

present in 2015. Thus, my analysis centers on the intensive margin of adaptation,
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considering only existing areas and not the extensive margin—such as migration to

currently uninhabited regions or the emergence of economic activity in areas with none

in 2015. As there is no data on population and economic flows to reliably calibrate such

predictions for these areas, I believe projections on this extensive margin would require

a level of external model validity that is hard to achieve. In Figure 7, I present the

distribution of changes in amenities and sectoral productivities across 12,674 gridded

locations, using estimated dose-response functions.
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Figure 6: Ratio of amenity (left), agricultural productivity (middle), non-agricultural
productivity (right) changes between scenario 2 with SSP2-4.5 forced with biogeo-
chemical anthropogenic impacts and scenario 1 without climate change. For sectoral
productivities, I winsorize the top of the distribution at 1.5 for illustration.

This graph yields three main conclusions. First, the average impact of climate

change is negative for amenities and sectoral productivities. As in Cruz (2021) and

as suggested by our dose-response functions, the marginal impact on amenity is one

order of magnitude below the marginal nonlinear impact of temperatures on sectoral
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productivities. Indeed, mean amenity changes are 5% with respect to baseline, while

mean sectoral productivy changes are as large as 28% and 48% for agricultural and

non-agricultural productivities. Second, in comparison with previous estimates yield-

ing benefits from climate change for amenities and sectoral productivities in many

locations, the impacts of climate change are negative for almost all locations when

the entire intra-annual temperature distribution is considered. Even if some moderate

daily mean temperatures have positive impacts on these variables in our dose-response

functions, the aggregate effect is negative. Third, the impacts for sectoral productivi-

ties are much more dispersed than the impacts of climate change on amenities: most

of the spatial heterogeneity will therefore come from these channels.

I then study how these changes in sectoral amenities and productivities translate

into welfare impacts, once the adaptation of agents is taken into account. In Figure (7),

I plot the distribution of changes in welfare in scenario 2 with biogeochemical climate

change with respect to baseline scenario 1 without climate change.
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Figure 7: Ratio of welfare changes between scenario 2 with SSP2-4.5 climate impacts
and counterfactual scenario 1 without climate change, plotted on a map with smoothed
transitions between gridded locations (left) and on an histogram with the dotted av-
erage welfare change of 1% (right).
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Figure (7) highlights two key findings. First, the mean welfare change under the

SSP2-4.5 scenario is negative, with a 0.7% decline in welfare, equivalent to the 0.7%

decrease estimated by Cruz (2021) for RCP6.0, despite RCP6.0 being a more carbon-

intensive pathway. Second, with few exceptions driven by specific regional climates,

such as the southern Arabian Peninsula, the marginal impact of climate change under

SSP2-4.5 is negative across most regions. Contrary to previous estimates, I find no evi-

dence of marginal benefits from climate change in northern locations. Since my analysis

incorporates the intra-annual distribution of daily mean temperatures interacted with

non-linear dose-response functions based on these distributions, the resulting welfare

changes do not follow a simple isomorphic relationship to annual time-invariant tem-

perature scalers that mimic polar amplification. The changes in annual temperature

distributions are more complex than a uniform shift in the mean. These non-linear

warming patterns, when combined with the non-linear response of welfare to temper-

ature variations within the year, result in non-linear welfare impacts.

4.4 Counterfactual exogenous biophysical impacts (SSP2-4.5)

Building on the baseline estimates that include the biogeochemical impacts of climate

change, I now assess the relative contribution of biophysical channels through LULC

changes—the effects of albedo, evapotranspiration, and surface roughness. Figure 8

illustrates the distribution of welfare changes in scenario 3, which incorporates bio-

physical channels, relative to scenario 2, where only climate change impacts from the

carbon cycle are considered without biophysical effects. These welfare changes are

expressed as a fraction of the total change between scenarios 2 and 1, reflecting the

standard climate impact estimates under SSP2-4.5, excluding biophysical channels.

Thus, the estimates give the share the biophysical impacts represent in the standard

biogeochemical estimates of the welfare impacts of climate change along SSP2-4.5.
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Figure 8: Share of welfare changes (in %) between scenario 3 with both SSP2-4.5
biogeochemical and biophysical channels and counterfactual scenario 2 without bio-
physical channels in the change between scenario 1 and scenario 2, plotted on a map
with smoothed transitions between gridded locations (left) and on an histogram with
the dotted average welfare change (right). The distribution is 98% winsorized.

Figure (8) provides two key insights. First, biophysical channels account for a non-

negligible portion of the welfare impacts of climate change typically estimated from

biogeochemical factors under SSP2-4.5, i.e. when temperature downscaling is assumed

to be linear, time-invariant and exogenous to regional economic activities. Specifically,

these regional biophysical processes, driven by LULC changes, contribute approxi-

mately 2.4% to the overall welfare impacts currently attributed to climate change.

Regional economic activity does shape regional climate impacts. Second, the effects of

these biophysical channels are predominantly negative across most regions.

Once I have retrieved the aggregate welfare impact of the biophysical channels, I

estimate their distributional impacts with respect to standard biogeochemical climate

impacts. In Figure (9), I plot the distribution of welfare impacts under biogeochemi-

cal impacts (left), under both biogeochemical and biophysical impacts (middle) , the

distribution of the share of biophysical welfare impacts with respect to standard bio-
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geochemical impacts (right) against the log of 2015 GDP per capita (ppp USD).
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Figure 9: Distributional impacts of biogeochemical and biophysical channels along
SSP2-4.5 Left Biogeochemical only with respect to no climate change (scenario 2 and
scenario 1) Middle Both biogeochemical and biophysical impacts with respect to no
climate change (scenario 3 and scenario 1). Right Deviation between scenario 2 and
scenario 3 (scenario 3 and scenario 2). The red lines represent correlation, fitted using
a linear regression model.

Figure (9) shows that the biogeochemical climate impacts are regressive, affecting

more the poorest 2015 location. Indeed, a simple linear regression suggests that a 1%

increase in GDP per capita yields a 0.1% decrease in welfare change with respect to the

baseline simulation without climate impacts. Biophysical impacts further exacerbate

the regressivity of biogeochemical impacts, by a 0.001% decrease in marginal welfare

impacts for a 1% increase in 2015 GDP per capita. Thus, biophysical channels imply a

1% increase in the slope of the regressivity of standard biogeochemical climate impacts.

5 Discussion

As our understanding of the mechanisms through which human activities and climate

impacts interact goes further, I investigate a mechanism qualitatively distinct from
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the traditional biogeochemical one: the biophysical channel by which LULC changes

bring regional climate impacts because of changes in albedo, evapotranspiration and soil

roughness. While this mechanism might be negligible at a global scale in the first-order

computation of the impacts of climate change, it does have heterogeneous regional ef-

fects that should be scrutinized carefully because they can cascade into large aggregate

welfare effects and distributional consequences. In this paper, I quantify how and how

much the regional biophysical channel of climate impacts driven by land use land cover

changes matter. I first build a reduced-form representation of the regional biophysical

feedbacks. Then, I leverage a dynamic quantitative spatial economic model applied

to climate change with an explicit modelling of adaptation through trade, migration

and changes in sectoral specialization. Furthermore, I estimate model-consistent dose-

response functions of regional amenities and sectoral productivities to changes in the

annual distribution of daily mean temperatures. Finally, I take the theoretical setting

to the data at 1° gridded global scale. I solve the model with dynamic exact hat algebra

and compare a baseline with forward-looking agents under ‘middle-of-the-road’ SSP2-

4.5 without regional biophysical feedback to the counterfactuals with regional LULC

changes and biophysical feedbacks. I compute the distributional and aggregate welfare

impact for benchmark model and under counterfactual climates regarding LULC.

In conclusion, my analysis demonstrates that regional economic activity plays a

significant role in shaping regional climate impacts. By incorporating biophysical

channels into the assessment of SSP2-4.5, I find that these channels account for an

additional 2.4% of the biogeochemical impacts on welfare, on average. The effects are

unevenly distributed, influenced by both socioeconomic factors—such as urban land-

use changes and transitions from shrublands or forests to croplands—and by shifting

climate zones. Notably, the impacts of biophysical channels are predominantly negative

across regions and, like biogeochemical effects, are regressive, disproportionately affect-

ing lower-income regions based on 2015 income levels. In both scenarii of future climate
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impacts, interacting intra-annual warming patterns with non-linear damage functions

from temperature bins implies that nearly all regions will suffer from the impacts of

climate change, with no significant benefits expected in the Northern Hemisphere.

A future direction, which is already underway for this paper, is to endogenize

marginal deviations from SSP2-4.5 in land-use change. I use the exogenous MESSAGE-

Globiom scenario SSP2-4.5 as a first approximation. But around this benchmark

SSP2-4.5 from which I calibrate productivity and population exogenous paths, cli-

mate impacts and endogenous adaptation decisions (migration, sectoral specialization

and trade) drive marginal changes in LULC changes in comparison with the stan-

dard MESSAGE-Globiom scenario. I could map marginal changes in the model input

stemming from endogenous adaptation decisions in my quantitative spatial model to

changes in model output around this scenario with a flexible statistical relationship,

e.g. a surrogate model with gaussian processes (GP) to emulate the more complex

land-use model. Alternative avenues could be taken, each with its limits. First, I could

use reduced-form econometrics on historical data, but there is no exogenous variation

to leverage, be it an instrument or a quasi-experimental setting. Panel fixed effect

approaches (Chen et al., 2020) are affected by endogeneity and simultaneity as the

authors have no control over the data-generating process. Second, I could build a com-

plete dynamic model of land use changes including a market for crops, for land prices,

etc., as well as assumptions about agricultural and urban policies. But the dynamic

relation in the competition for land use would be computationally demanding and hard

to calibrate at the global 1° gridded scale. This GP approach might be adapted for four

main reasons. First, it allows me to map marginal deviations around an established ex-

ogenous scenario SSP2-4.5 building on robust land-use models. Second, I have control

over the data-generating process, both exogenous scenario for drivers and mechanistic

relations between variables of interest. Third, the GP is flexible: it is a non-parametric

regression tool where I do not define a specific functional form to the input-output

39



mapping ex-ante and I can handle non-linear relations. Fourth, GP allows uncertainty

quantification as they are probability distribution over a function space.

There are other limits to my approach. First, I should include other impacts, as

land use land cover changes have large impacts on other planetary limits, for instance

biodiversity. Second, I could estimate counterfactual policies to reduce the welfare

cost of these biophysical channels, for instance zero net land take or irrigation policies

(Braun and Schlenker, 2023). Finally, I would like to explore further impacts, for

instance precipitation (Devaraju et al., 2015; Smith et al., 2023) and its interaction

with temperature changes (e.g. wet bulbs). Water cycle indeed raises concerns not

only because of deforestation (Grosset et al., 2023), but also following urbanization

(Sui et al., 2024). These investigations are left for further research.
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A Appendix

A.1 Migration in hat algebra

I write the change in bilateral migration flows in dynamic exact hat algebra. Starting

from the initial equation for bilateral migration flows, I write the equation in time

differences:

µ̇r,s,t+1 =

ut+1(s)1/Ωm(s)−1/Ω∑
n∈N ut+1(n)1/Ωm(n)−1/Ω

ut(s)1/Ωm(s)−1/Ω∑
n∈N ut(n)1/Ωm(n)−1/Ω

(17)

Then, as migration costs are assumed to be time-invariant :

µ̇r,s,t+1 =
u̇t+1(s)

1/Ω∑
n∈N ut+1(n)1/Ωm(n)−1/Ω∑
n∈N ut(n)1/Ωm(n)−1/Ω

(18)

I have that:

µ̇r,s,t+1 =
u̇t+1(s)

1/Ω

∑
n∈N ut+1(n)1/Ωm(n)−1/Ω ut(n)1/Ωm(n)−1/Ω

ut(n)1/Ωm(n)−1/Ω∑
n∈N ut(n)1/Ωm(n)−1/Ω

(19)

This yields the equation of interest.

A.2 Profit maximization

Profit in sector k (i.e. good i), location r, writes (symmetry between varieties ω):

Πk
t (r) = pkt (r)z

k
t (r)L

k
t (r)

µk

Hk
t (r)

1−µk − wt(r)L
k
t (r)−Rk

t (r)H
k
t (r) (20)

First-order conditions of profit maximization problem write:

∂Πk
t (r)

∂Lk
t (r)

= 0 (21)

∂Πk
t (r)

∂Hk
t (r)

= 0 (22)
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Thus:

µkpkt (r)z
k
t (r)L

k
t (r)

µk−1Hk
t (r)

1−µk − wt(r) = 0 (23)

(1− µk)pkt (r)z
k
t (r)L

k
t (r)

µk

Hk
t (r)

−µk −Rk
t (r) = 0 (24)

Replacing pkt (r) yields:

Rk
t (r)H

k
t =

1− µk

µk
wt(r)L

k
t (25)

A.3 Prices and bilateral trade flows in exact hat algebra

Starting from the definition of prices (7), I write:

Ṗ k
n,t+1 =

(
N∑
l=1

Zk
l,t+1[x

k
l,t+1τ

k
nl,t+1]

−θk∑N
m=1 Z

k
m,t[x

k
m,tτ

k
nm,t]

−θk

)−1/θk

(26)

Multiplying and dividing each element in the summation just as what I have done

for migration:

Ṗ k
n,t+1 =

 N∑
l=1

Zk
l,t+1[x

k
l,t+1τ

k
nl,t+1]

−θk Zk
l,t[x

k
l,tτ

k
nl,t]

−θk

Zk
l,t[x

k
l,tτ

k
nl,t]

−θk∑N
m=1 Z

k
m,t[x

k
m,tτ

k
nm,t]

−θk


−1/θk

(27)

Using trade flows from equation (10), I have the equation of interest (as trade costs

are time invariant). Similarly for trade flows, I multiply and divide the numerator

of (10) by Zk
it

(
xkitτ

k
nit

)−Θk

and do the same for each element of the summation of the

denominator:

λknit+1 =

Zk
it+1

(
xkit+1τ

k
nit+1

)−Θk Zk
it(xk

itτ
k
nit)

−Θk

Zk
it(xk

itτ
k
nit)

−Θk

∑
l Z

k
lt+1

(
xklt+1τ

k
nlt+1

)−Θk Zk
lt(xk

ltτ
k
nlt)

−Θk

Zk
lt(xk

ltτ
k
nlt)

−Θk

(28)
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Which yields:

λknit+1 =
Żk

it+1

(
ẋkit+1

)−Θk

Zk
it

(
xkitτ

k
nit

)−Θk∑
l Ż

k
lt+1

(
ẋklt+1

)−Θk

Zk
lt

(
xkltτ

k
nlt

)−Θk (29)

Then, dividing by the sum:

λ̇knit+1 =
Żk

it+1

(
ẋkit+1

)−Θk∑
l λ

k
nltŻ

k
lt+1

(
ẋklt+1

)−Θk (30)

A.4 Welfare

We study:

W0 =
∑
r∈N

∞∑
t=0

βtu̇t+1(r) =
∑
r∈N

∞∑
t=0

βtȧt+1(r)ẏt+1(r) (31)

We have the equation for amenity changes. Changes in real income write:

ẏt+1(r) =

(∑K
k=1(L

k
t+1(r)/Lt+1(r))w

k
t+1(r)

)
(
Πk∈KṖ k

t (r)
χk

)(∑K
k=1(L

k
t (r)/Lt(r))wk

t (r)
) (32)

A.5 Dose-response functions

At equilibrium:

µr,s,t

µr,r,t

=
ut(s)

1/Ωm(r, s)−1/Ω

ut(r)1/Ωm(r, r)−1/Ω
=

(at(s)yt(s))
1/Ωm(r, s)−1/Ω

(at(r)yt(r))
1/Ωm(r, r)−1/Ω

(33)

Which yields:

log
(

µr,s,t

µr,r,t

)
= − λ

Ω
log
(

Lt(s)
Lt(r)

)
+ 1

Ω
log
(

āt−1(s)
āt−1(r)

)
+ 1

Ω
log(m(r, s)) + 1

Ω
log yt(s)

yt(r)
+ 1

Ω
(f(Ts,t, ζa)− f(Tr,t, ζa)) (34)
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A.6 Migration data

The key gap in our simulations is the matrix of intersectoral bilateral migration flows.

First of all, I do no have data on sectoral migration at this grid level and at the global

scale: I thus focus on bilateral migration flows without sector-specific mobility. Then,

I combine a datasetM inter
c1,c2 of 5-years international bilateral migration flows between c1

(out) and c2 (in) for each pair of N countries from 2010 to 2015 (Abel and Cohen, 2019)

with gridded data of net migration stocks from 2010 to 2015M intra
z for each 1° gridded

zone z from Kummu et al. (2018). The procedure, detailed in annex, has two steps.

First, I compute the probability of international inflows and outflows for each zone

times country based on net migration stocks and assign international migration flows

based on these probabilities. Then, once international migration flows are deducted

from net gridded migration stocks for each zone*country, I compute within-country mi-

gration flows between each region zone*country based on probability of intra-migration

flows given gridded net migration stocks net of inter-country migration flows. I then

aggregate the flow at 1° zone level. My procedure probably underestimates migration

flows (i.e. overestimates migration costs) but I unfortunately do not have gridded

births and deaths data to reconstruct migration flows à la Abel and Cohen (2019). For

robustness, I run simulations with lower migration costs.

• Compute the share sz,c,L2010 of each 1° zone z that is in country c based on 2010

population at level 0.1°. Compute the net migration stock M intra
z,c = sz,c,L2010 ∗

M intra
z of each pair (c,z) based on these population weights

• Normalize net migration stock at country c level for inflows

M̄ inflows
z,c =M intra

z,c +minc(M
intra
z,c )

which yields a probability of international inflows for each (c,z)

P inflows
z,c = M̄ inflows

z,c /sumc(M̄
inflows
z,c )
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• Normalize net migration stock at country c level for outflows, i.e.:

M̄ outflows
z,c = −

(
M intra

z,c −maxc(M
intra
z,c )

)
(35)

, which yields a probability of international outflows for each (c,z):

P outflows
z,c = M̄ outflows

z,c /sumc(M̄
outflows
z,c ) (36)

• Assign bilateral international migration flows (in and out) for each country c to

each zone z based on these probabilities to obtain (1) MBz1,z2 the 1° bilateral

matrix of international migration flows and (2)M intra−net
z,c , i.e. stock of migration

flows at gridded-country level net of international migration flows.

• For each zone z1 in c:

1. If stock in z1 is positive, compute the probability of receiving internal flows

from all other z2. Normalize net migration stock at country c level for

inflows for all z2, i.e. M̄ inflows,net
z2,c = M intra,net

z2,c + minc(M
intra,net
z2,c ), which

yields a probability of internal inflows for each (c,z1,z2), P inflows,net
z2,c =

M̄ inflows,net
z2,c /sumc−z1(M̄

inflows,net
z2,c )

2. If stock in z1 is negative, compute the probability of sending internal flows

to all other z2. Normalize net migration stock at country c level for in-

flows for all z2, i.e. M̄ inflows,net
z2,c = −(M intra,net

z2,c − maxc(M
intra,net
z2,c ), which

yields a probability of internal inflows for each (c,z1,z2), P outflows,net
z2,c =

M̄ outflows,net
z2,c /sumc−z1(M̄

outflows,net
z2,c )

• Add these internal flows to our matrix MBz1,z2.
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A.7 Algorithm

Algorithm. Solve period by period the sequential competitive equilibrium given an ini-

tial allocation (Lk
0, w

k
0 , µi,n,0, λi,n,0) and an anticipated convergent sequence of changes

in fundamentals, {Θ̇t}∞t=0 (regional productivities and amenities affected by exogeneous

biogeochemical climate impacts). without changes in LULC and biophysical channel.

From this baseline scenario, I compute distributional and aggregate welfare impact of

climate change along SSP2-4.5. The counterfactual [without climate change] is the

same algorithm but with no climate impacts.

• Scenario 1: without climate impacts. In this baseline scenario, I compute the

distribution of people and activity without future climate impacts.

• Scenario 2: with SSP2-4.5 climate impacts, without biophysical impacts. In

this first counterfactual, I compute the distribution of people and activity and

the aggregate and distributional welfare impacts of exogenous SSP2-4.5 without

land use changes.

• Scenario 3: with SSP2-4.5 climate impacts and exogenous biophysical impacts.

In this second counterfactual, I compute the distribution of people and activity

and the aggregate and distributional welfare impacts of exogenous SSP2-4.5 with

exogenous land use changes from MESSAGE-Globiom model.
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Algorithm 1 Resolution
Inner loop solves the static equilibrium at each time period t. Outer loop computes path for funda-

mental variables given market clearing at each time t in each location r.

• Make an initial convergent (to 1 when T large) guess for the path of expected lifetime utilities

expressed in time differences {u̇0
r,t}

T,N
t=0,r=1, where the superscript (0) indicates a guess.;

• While [outer loop] convergence criteria not met (tolerance, nb of loops)

1. For all t, use {u̇(0)
r,t }

T,N
t=0,r=1 and {µr,n,0}N,N

r=1,n=1 to solve for the path of {µr,n,t}T,N,N
t=0,r=1,n=1.

2. For all t, use equation for population dynamics, {µr,n,t}T,N,N
t=0,r=1,n=1,{Lk

r,0}
T,N,K
r=1,k=1 and

SSP2 exogenous birth & death rates scenarii to get {Lk
r,t}

T,N,K
t=0,r=1,k=1

3. Select climate scenario and recover the path of regional productivity and amenity changes

in each r {Żk
t (r)}

T,N,K
t=0,r=1,k=1, {ȧt(r)}T,N

t=0,r=1 from the scenario using estimated dose-

response functions and exogenous productivity growth rates.

4. For [inner loop] each period t > 0

– Define a guess for wages {ẇ(0)
r,t+1}

T,N
t=0,r=1

– Obtain {ẋk
r,t+1}

N,K
r=1,k=1 using {Lk

t (r)}
N,K
r=1,k=1 and guess for {ẇr,t+1}Nr=1.

– Use {ẋk
r,t+1}

N,K
r=1,k=1, {Żk

t (r)}
N,K
r=1,k=1 and {λk

rn,t}
N,N,K
r=1,n=1,k=1 to obtain

{Ṗ k
r,t+1}

N,K
r=1,k=1

– Obtain {λk
rn,t+1}

N,N,K
r=1,n=1,k=1 from {Ṗ k

r,t+1}
N,K
r=1,k=1, {Żk

t (r)}
N,K
r=1,k=1, {ẋk

r,t+1}
N,K
r=1,k=1

and {λk
rn,t}

N,N,K
r=1,n=1,k=1

– Compute {ẇr,t+1}Nr=1 and check if market clears in each location

– Update {ẇ(0)
r,t+1}Nr=1 if market does not clear

– If market clears at t, compute aggregate price index {Ṗr,t+1}Nr=1 using fixed share

of each good in worker’s expenditure

5. Repeat for each t to obtain at each period the momentary equilibrium and recover full

paths of {ẇn,t+1}Tt=0 and {Ṗr,t+1}T,N
t=0,r=1, which gives change in worker’s real income.

• For each t, compute {u̇t+1(r)}T,N
t=0,r=1 and change in worker’s real income using {ẇr,t+1}T,N

t=0,r=1

and {Ṗr,t+1}T,N
t=0,r=1. Check if {u̇t+1(r)}T,N

t=0,r=1 ≈ {u̇(0)
t+1(r)}

T,N
t=0,r=1 according to convergence

criterion. If not, go back to first step and update initial outer guess.
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