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Abstract

How does regional economic activity shape regional climate impacts? Land use and

land cover (LULC) change with economic activity, affecting regional climate through

biophysical channels like albedo. These regional feedbacks are often overlooked in

quantitative spatial models, which focus on global carbon effects. By incorporating

this biophysical feedback, I find notable welfare implications for adaptation and miti-

gation, as it alters temperature impacts and interacts with regional adaptation. Using a

dynamic-spatial model at a global 1° grid along ‘middle-of-the-road’ scenario SSP2-4.5,

I estimate the welfare consequences of climate change, with agents that adapt through

migration, structural change and trade. I interact intra-annual climate projections with

model-consistent non-linear damage patterns on amenities and sectoral productivities.

Without biophysical impacts, almost all locations experience negative welfare changes:

there are no benefits to be expected from climate change in the Northern Hemisphere.

Biophysical channels account for 2.4% of total welfare impacts, intensifying regressive

effects of climate change on lower-income regions.

Keywords: environmental policy, spatial integrated assessment models, endogenous

adaptation, land use land cover, albedo, evapotranspiration, roughness, temperature

downscaling.



1 Introduction

‘Any local land changes that redistribute energy and water vapour between the land and the atmosphere

influence regional climate (biophysical effects, high confidence)’ (IPCC).

Uncertainties about changes in land conditions originating from anthropogenic land uses

have become a major concern, as highlighted by IPCC in its 2019 special report on climate

change and land (Masson-Delmotte et al., 2019). Changes in land conditions have for in-

stance a major impact on biodiversity and contribute to global climate change through carbon

releases or by reducing land carbon storage potential. In this study, I focus on the regional

biophysical climate impacts of changes in regional land conditions. These biophysical im-

pacts are not driven by carbon emissions but by changes in land cover conditions which can

reduce or accentuate regional warming (Georgescu et al., 2011; Alkama and Cescatti, 2016)

depending on the location and season (Duveiller et al., 2018b).

Economists usually omit these mechanisms in their assessments of climate impacts:

they focus on the biogeochemical channel of global carbon emissions. For instance, in the

burgeoning field of spatial integrated assessment modelling (Desmet and Rossi-Hansberg,

2024), regional temperatures at location r and time t are inferred from global average tem-

peratures through statistical downscaling, also called pattern scaling (Santer et al., 1990). As

depicted in Fernández-Villalverde et al. (2024), pattern-scaling suggests a simple functional

relation such as: Tt(r) = f (TA
t ) + ηt(r), where local temperature Tt(r) at grid cell r and

time t is a response to global average temperature TA
t indicated by f (.) and a stochastic

local residual temperature variability term ηt(r). The stochastic process that determines the

distribution of local residual ηt(r) is assumed to be stationary and exogenous to regional

economic activities. In this work, I reconsider these two assumptions. As our understand-

ing of the mechanisms through which human activities and climate impacts interact goes

to finer spatial resolution, I investigate the heterogenous endogenous dynamic biophysical

regional impacts and their interactions with adaptation and economic decisions. I quantify

how much the regional biophysical channels driven by land use land cover (LULC) changes

matter along ‘middle-of-the-road’ Shared Socioeconomic Pathways (SSP) 2-4.5.
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Human-induced LULC changes affect regional climate through three key biophysical

channels: change in albedo, change in evapotranspiration and change in surface roughness

length. Albedo is the fraction of solar radiation reflected by a surface. Evapotranspiration is

the combined process of evaporation from the Earth’s surface and transpiration from vegeta-

tion. Roughness length refers to the measure of a surface’s roughness, which influences how

air moves above that surface. Surfaces with less albedo, e.g. because of urbanization, absorb

more solar radiation which leads to higher temperatures as more solar energy is converted to

heat in these areas. Evapotranspiration decreases in a given location, e.g. because of defor-

estation, mean that less water is evaporated from surfaces, requiring less energy to change

state from liquid to gas while this energy is usually drawn from the environment, cooling

both the surface and the surrounding air. The decrease in evapotranspiration can thus bring

regional temperature increases. Rough surfaces, such as forests or areas with rugged topog-

raphy, can slow down air movement, thereby promoting the cooling of local temperatures.

Smoother agricultural and urban areas, on the other hand, can reduce frictional drag on the

air, allowing warmer air from surrounding regions to flow into these areas. These three

biophysical mechanisms are affected by changes in physical land surface characteristics, es-

pecially human-driven land use land cover changes: there are regional feedbacks between

human activity and these biophysical channels. The two key human drivers that I study here

are changes in agricultural and urban land demands.

There are large heterogeneities in the impacts of these biophysical feedbacks, both phys-

ical and socioeconomic. The interaction between these sources of spatial and temporal het-

erogeneity, both biophysical and socioeconomic, might increase the divergence between dif-

ferent locations over the world.

On the one hand, there are spatial and temporal heterogeneities in the biophysical mech-

anisms. Indeed, observations show that biophysical channels do not have the same impact

over different periods of the year (Duveiller et al., 2020). Furthermore, biophysical channels

can vary in sign and magnitude depending on regional background climate (Duveiller et al.,

2018b): land use changes, for instance from forest to grassland, bring conflicting changes in

albedo (increase) and evapotranspiration (decrease). These conflicting changes may lead to

cooling or warming depending on which process dominates, which depends on local climate
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background. Huang et al. (2020) explore this spatial heterogeneity within Europe.

On the other hand, there are large spatial and temporal heterogeneity in the socio-economic

drivers of land use land cover changes bringing biophysical impacts, because there are var-

ious land use land covers today and future land use land cover changes. Different paths

of urbanization are to be expected in different parts of the world, depending on demogra-

phy, economic growth and climate impacts, among others drivers (UN World Urbanization

Prospects). Population concentration in areas that are less affected by climate impacts might

drive urban land demand and changes in regional biophysical impacts that could reduce the

aggregate benefits of migration and change the distributional impacts of the climate burden

between regions. This might matter even more if climate change and population growth

have their most damaging effects in similar places (Henderson et al., 2024). Different paths

of agricultural land use land cover changes will also occur depending on structural change,

food needs and heterogeneous impacts of climate change on agricultural yields, etc. (Fu-

ture of Food and Agriculture, UN FAO). These changes in sectoral specialization come with

changes in agricultural land extent which have biophysical impacts. The biophysical chan-

nels might reduce or increase the benefits of regional adaptation expected from structural

change.

In this paper, I estimate the aggregate and distributional welfare impacts of the biophysi-

cal channels of climate impacts along SSP2-4.5. First, I match LULC scenario from LUMIP

MESSAGE-Globiom along SSP2-4.5 with Duveiller et al. (2018b) and Zhou et al. (2022)

gridded estimates of the historical impact of LULC changes on daily mean daytime and

nighttime land surface temperatures. More specifically, I compute the mean impact over

thirteen Köppen-Geiger climate zones as the regional biophysical feedbacks depend on back-

ground climate. I then use a gridded linear relation between daytime and nighttime land

surface temperatures and daily mean surface temperature (Hooker et al., 2018), a metric

adapted to the measure of climate impacts on economic activities. This procedure allows

me to build a reduced-form representation of the regional biophysical feedbacks that can be

projected using anticipated gridded changes in Köppen-Geiger zones along SSP2-4.5 (Beck

et al., 2023) and changes in LULC.
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I build a two-sectors (agricultural sector and all other sectors), dynamic quantitative spa-

tial equilibrium model (Eaton and Kortum, 2002; Redding and Rossi-Hansberg, 2017) where

locations differ in regional annual distribution of mean daily surface temperature, sectoral

productivities, amenities, bilateral trade and migration costs. Productivities represent fea-

tures that make different regions more or less attractive in terms of the costs of production,

which may include natural advantages (such as proximity of natural resources) or induced

advantages (such as infrastructure). Regional amenities capture characteristics of each lo-

cation that make them more or less desirable places to live. Workers in each location have

preference for regional amenities and consume a variety of horizontally differentiated goods.

They experience idiosyncratic preference shocks. Workers are mobile across locations but

face time-invariant migration costs. Their migration decisions are simplified a la Desmet

et al. (2018) to make the 1° gridded model tractable. I use Caliendo et al. (2019) and

Kleinman et al. (2023) dynamic exact hat algebra technique that avoids the shortcomings

of regional fundamental amenities estimation. Finally, firms face monopolistic competition

without intermediate inputs in the production as in Conte et al. (2021), with time-invariant

and symmetric bilateral trade costs that are not sector-specific, and without trade imbalances.

I solve the model under the assumption of a stationary equilibrium.

The simulations are done under exogeneous biogeochemical climate change with pro-

jections of future distributions of daily mean temperatures taken from the average of bias-

adjusted (Lange, 2019) and down-scaled SSP2-4.5 CMIP6 experiments of four Earth System

models (ESM) (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0) with the

assumption of 2015 fixed land use. Biophysical impacts are added to these exogeneous

projections with the implicit assumption of a shape-preserving mean increase in the annual

distribution of daily mean temperatures. I could compare these simulations to CMIP pro-

jections with exogenous land use change scenarios, but this would lump the two biophysical

and biogeochemical effects of land use change together: a change in land use in an ESM

leads to a biogeochemical impact via the global carbon cycle (e.g. carbon releases from

deforestation), which is not disentangled from the biophysical impact. An important work

is done by the LUMIP platform (Lawrence et al., 2016) to disentangle these future land use

impacts, especially for deforestation, e.g. in Boysen et al. (2020). But these studies treat the
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various biophysical impacts in silo, or model them along exogenous scenarios of population,

trade, sector specialization, without modeling the endogenous reaction of agents to climate

impacts as in the recent quantitative spatial literature (Cruz and Rossi-Hansberg, 2024).

I follow Rudik et al. (2022) and use the equilibrium conditions of the theoretical model

to compute model-consistent dose-response function of regional amenities and sectoral pro-

ductivities to distortions in the annual regional distribution of daily mean temperatures. The

intuition behind this estimation approach is that changes in migration and trade flows allows

ceteris paribus to identify changes in amenity and sectoral productivity levels. As the dose-

response functions are estimated from the equilibrium conditions of the theoretical model,

the simulation results reflect the actual welfare impacts of climate change given the model’s

assumptions regarding macroeconomic dynamics and adaptation decisions. I combine ERA-

5 climate reanalysis (Hersbach et al., 2020) of the population-weighted country-level an-

nual distribution of daily mean temperatures with BACI CEPII and Abel and Cohen (2019)

datasets on trade and migration flows at the country level. Focusing on the whole shape

of the intra-annual distribution of daily mean temperatures rather than an arbitrary moment

such as the mean annual temperature (Fillon et al., 2024) allows to capture more complex

changes in the high-dimensional temperature vector. The temperature bins allow to capture

some of the non-linearity in the climate impacts (Burke et al., 2015).

To what extent does regional economic activity shape regional climate impacts? My

quantitative estimation of the biophysical channels of climate change under SSP2-4.5 pro-

ceeds in two steps. First, I estimate the aggregate and distributional welfare impacts of the

SSP2-4.5 scenario, considering only the carbon cycle—i.e., I ignore the impact of regional

economic activity on regional climate change. Then, I assess the aggregate and distribu-

tional impacts of SSP2-4.5 with the addition of biophysical channels. Two key conclusions

emerge from the first step, where I estimate the baseline impacts of biogeochemical cli-

mate change. First, climate change impacts are negative for most regions: by accounting

for intra-annual warming patterns and non-linear damage patterns across temperature bins,

I find no evidence of benefits from warming in the Northern Hemisphere. The aggregate

welfare impact of SSP2-4.5 is, however, consistent with existing literature; most impacts are
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driven by the non-linear effect of temperature distortions on sectoral productivities. Sec-

ond, biogeochemical climate change is regressive: the magnitude of welfare changes under

SSP2-4.5 is inversely related to initial income levels in 2015. In the second step, I estimate

the impact of biophysical channels. From my simulations, two conclusions arise. First,

regional economic activity does indeed influence regional climate impacts and the corre-

sponding welfare changes. On average, this additional biophysical effect accounts for 2.4%

of the biogeochemical impacts estimated in the first step. Second, the biophysical impacts

vary across both time and space. This heterogeneity is, first, socioeconomic: it depends

on scenarios of urban land-use change and the net transitions of shrublands and forests into

croplands. It is also climatic: the effect of biophysical channels depends on the climate zone

in which a location is situated (e.g., arid, temperate, etc.), with these classifications shifting

over time due to global climate change. For some biophysical channels, this heterogeneity is

also seasonal, which further strengthens the case for considering the intra-annual distribution

of temperatures in the study of climate impacts. In my simulations, I find that most locations

experience a negative impact from biophysical channels on welfare under SSP2-4.5. Like

the biogeochemical impacts, the biophysical effects are regressive relative to 2015 income

levels.

I contribute to three main strands of economic literature. First, I contribute to the grow-

ing literature in climate economics using dynamic spatial quantitative equilibrium model to

measure the impacts of climate change under endogenous and regional adaptation (Krusell

and Smith Jr, 2022; Cruz and Rossi-Hansberg, 2024). In comparison with these spatial

integrated assessment models, I do not assume a time-invariant exogenous linear relation be-

tween global climate change and regional climate impacts. Indeed, downscaling from global

to regional climate change cannot be considered as stable across time and space: it is not

exogeneous to regional economic activities. Averaging over multiple deterministic draws

taking the whole scientific information into account, e.g. similar to work of Desmet et al.

(2018) on sea level rise but in application to parametric uncertainty over regional transient

climate response to global cumulative emissions, would not allow to capture these nonlin-

ear biophysical mechanisms. Thus, in addition to non-linearities in climate impacts, largely
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documented since seminal work from Schlenker and Roberts (2009); Burke et al. (2015), i.e.

non-linearity in the mapping from a given summary statistics of regional climate change to

economic impacts on amenities and productivities, I add physical non-linearities in the map-

ping from global climate change to regional climate change via endogenous LULC changes.

Another venue in this literature is to use actual climate projections (Rudik et al., 2022; Bilal

and Rossi-Hansberg, 2023) but this implies that LULC are either assumed time-invariant, or

that the biophysical channels of LULC are entangled with their biogeochemical impacts.

Second, I contribute to the literature modelling adaptation which has developed in re-

sponse to the Lucas critique adressed to the standard climate-economy models (Nordhaus,

2008; Barrage and Nordhaus, 2024): in comparison with previous approaches, I study how

adaptation decisions might interact with climate impacts. Thus, I relate to the literature on

stuctural transformation under a changing climate (Conte et al., 2021; Albert et al., 2021;

Nath, 2022) and urbanization and their interaction with LULC changes (Michaels et al.,

2012; Ahlfeldt et al., 2015; Coeurdacier et al., 2022; Eckert and Peters, 2022). I quantify

the impact of these sectoral specialization and urbanization changes on regional climates via

biophysical mechanisms.

Third, I contribute to the literature studying the interactions betweeen economic activity,

land uses and climate impacts. This literature usually focuses on forest covers (Grosset

et al., 2023) and micro-scale impacts, for instance health impacts related to urban heat island

(Manoli et al., 2019). I extend this literature in three directions: I consider various transitions

in land uses (transition from forests to croplands, transition from shrublands to croplands,

transition from non-impervious to impervious surfaces), at the global scale (around 13000

gridded locations) and with larger regional impacts at the 1° gridded resolution, in response

to climate scientists’ concerns that biophysical impacts are not solely local (Duveiller et al.,

2018b; Chakraborty and Qian, 2024).
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2 Motivation

2.1 Regional biophysical channels and their impacts

2.1.1 Impact of regional agricultural land demand on regional climate

Changes in agricultural LULC have heterogeneous impacts on regional climates and de-

pending on the season. Duveiller et al. (2018a) provide gridded estimates of climate impacts

stemming from regional transitions from and to croplands at 1° spatial resolution. I compute

the mean temperature impact of these land transitions over Köppen-Geiger climate zones be-

cause biophysical impacts depend on regional climate backgrounds (Duveiller et al., 2020).

Koppen-Geiger climate zone Forests to Croplands Shrublands to Croplands

Arid, desert - / - 0.0108/0.0169°C

Humid continental 0.0078/0.0015°C -0.0102/0.0018°C

Humid subtropical 0.002/0.0017°C 0.0046/-0.0021°C

Mediterranean 0.0029/0.0003°C - / -

Mediterranean continental -0.0087/0.0007°C -0.0007/-0.0025°C

Oceanic -0.0013/-0.0038°C 0.0098 / - °C

Semi-Arid -0.0015/0.0013°C 0.0043/0.009°C

Subarctic -0.0037/0.0005°C -0.0048/0.0028°C

Tropical, Monsoon 0.0022/0.0001°C 0.0032/-0.0033°C

Tropical, Rainforest 0.0017/0.003°C 0.0043/-0.0079°C

Tropical, Savannah -0.0048/-0.0004°C 0.0026/0.0037°C

Tundra 0.0022/0.0104°C 0.0148/-0.0016°C

Table 1: Change in monthly (January/July for illustration) mean daily surface temperature

(in °C) for various Köppen-Geiger climatic zones for a 1% absolute change in land use for

two net transitions of interest: from forests to croplands, from shrublands to croplands. 1%

absolute change over 1° gridded regions represents around 123km2 at Equator and 87km2 on

the French mainland. Data is missing for some combinations.

In table (1), I give the distribution of change in mean daily surface temperature observed
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for two LULC transitions in all Köppen-Geiger climatic zones: transition from forests to

croplands and transition from shrublands to croplands. I convert daytime and nighttime land

surface temperatures to mean two-meters surface temperature using gridded linear relations

uncovered in Hooker et al. (2018). While Duveiller et al. (2018a) also provide estimates for

grasslands, they do not differentiate between rangelands grazed by domestic livestock and

other uses. I thus focus on changes in croplands without considering pastures.

2.1.2 Impact of regional urban land demand on regional climate

Changes in urban LULC have an impact on regional climates (Zhou et al., 2022). To

my knowledge, most studies focus on local urban heat islands effect in cities while I refer

to all global artificial impervious surfaces as these areas have temperature impacts that go

beyond local effects (Chakraborty and Qian, 2024). Past decades have seen large changes

in global artificial impervious surfaces. Zhou et al. (2022) give gridded regional climate

impacts of global artificial impervious surfaces extension at 50km x 50 km resolution. More

specifically, the authors give the change in urbanization over 1985 to 2015 and the change

in daytime and nighttime land surface temperature (LST) due to increase in urbanization

over the same period. I convert daytime and nighttime LST to mean two-meters surface

temperature using Hooker et al. (2018). I compute the mean impact over Köppen-Geiger

climate zones because I expect the impact to depend on regional climate background as for

urban heat islands (Zhao et al., 2014). In table (2), I give the distribution of annual mean

daily temperature changes from a 1% increase in impervious surfaces.
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Mean change Koppen-Geiger climate zone

0.0077°C Arid, desert

0.0096°C Humid continental

0.0115°C Humid subtropical

0.0103°C Mediterranean

0.0083°C Mediterranean continental

0.0106°C Oceanic

0.0076°C Semi-Arid

0.0068°C Subarctic

0.0108°C Tropical, Monsoon

0.0077°C Tropical, Rainforest

0.0123°C Tropical, Savannah

0.0114°C Tundra

Table 2: Change in annual mean daily surface temperature (in °C) for various Köppen-Geiger

climatic zones for a 1% absolute change in impervious surfaces over 1° gridded regions, i.e.

around 123km2 at Equator and 87km2 on the French mainland.

In order to use these estimates for simulations using distributions of daily mean temper-

atures, I make two assumptions. First, I assume homogeneity in the shift in distribution of

daily mean temperatures within each year (urban land) and each month (croplands). Second,

I assume that the change computed for each Köppen-Geiger zone holds in the future under

changing climate for the same climatic zone.

2.1.3 Köppen-Geiger climates

I plot the 2015 distribution of Köppen-Geiger climate zones.
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Figure 1: 13 Köppen-Geiger climate reference regions in 2015.

According to Beck et al. (2023), 8% of current land surface will transition to another

Koppen-Geiger region along SSP2-4.5. Thus, I can not use fixed current Koppen-Geiger

zone while the sign and magnitude of the biophysical channel stemming from land use land

cover changes depend on it. I use Beck et al. (2023) data to project in which Köppen-Geiger

zone each 1° grid cell will be along SSP2-4.5. Regions that change affiliation between 2015

and 2100 are:
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Figure 2: 1° locations who change Köppen-Geiger classification between 2015 and 2100

under SSP2-4.5.

2.2 Impact of economic activities on LULC changes

Once I have retrieved these estimates linking LULC to biophysical impacts, I map changes

in economic activities to LULC changes. In table (3), I give summary statistics for the dis-

tribution of cumulative net transitions from forests to croplands, from rangelands1 to crop-

lands, from non-impervious to impervious surfaces from 2015 to 2100 under SSP2-4.5 in

MESSAGE-Globiom (Hurtt et al., 2020), stored on the LUMIP platform.

1As a first approximation, I assume that biophysical channels estimated in Duveiller et al. (2018b) for

generic shrublands applies to the MESSAGE Globiom category of rangelands that does not include domestic

pastured grasslands. I could disentangle further between savannas and shrublands.
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Quantiles Forests to croplands Rangelands to croplands Non-urban to urban

0% -56.88 -27.19 -4.65

20% -0.49 0.00 0.00

40% 0.19 0.01 0.03

60% 1.01 0.17 0.13

80% 3.60 0.83 0.51

100% 63.96 43.36 19.19

Table 3: Cumulative net change (as a share of total cell extent, in %) between 2015 and

2100 in LUMIP MESSAGE-Globiom SSP2 4-5 for the 1° gridded locations used in the

simulations, from forests to croplands (left), from rangelands to croplands (middle), from

non-impervious to urban impervious surfaces (right).

Interacted with biophysical changes from tables (1) and (2), these LULC changes have a

heterogeneous impact on the future annual distributions of daily mean temperatures around

the world and over time. These dynamic biophysical impacts affect the future distribution of

economic activities, populations and welfare throughout the world in a way that is omitted

from estimates of climate change impacts of the quantitative spatial literature that uses time-

invariant linear temperature down-scaling. Model that use projections from CMIP6 earth

system models either assume fixed land use or use projections forced with direct human

forcing such as land use changes which do not differentiate between the various channels

by which land and other elements of the SSP affect climate, e.g. the specific biophysical

channels that we study here.

I have retrieved estimates linking economic activity to heterogeneous biophysical im-

pacts at the regional scale via changes in agricultural and urban land demands. I build a

spatial sectoral equilibrium model to understand how these regional feedbacks interact with

standard biogeochemical climate impacts and regional adaptation decicisions. I quantify

how these dynamic mechanisms shape the distribution of economic activity, population and

climate impacts along SSP2-4.5.
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3 Theoretical Model

3.1 Households

3.1.1 Preferences and migrations

Period utility of a worker j who resides in location r at t is multiplicative in four ele-

ments: the level of regional amenities at(r) that captures how valuable living in a given

location is other things being equal, the consumption of goods Ct(r), an individual-specific

idiosyncratic preference shock ϵ
j
t, drawn from a Fréchet distribution (i.i.d. across locations,

individuals, and time) with a shape parameter that equals the elasticity of migration to real

income, and the cost of migrating from location r in period s - 1 to a location r in period s.

U j
t(r) = at(r)Ct(r)ϵ

j
t(r)Π

t
s=1m(rs−1, rs)

−1 (1)

Dynamic migration decisions are simplified to static decisions as in Desmet et al. (2018),

so that: m(s, r) = m1(s)m2(r) and m(r, r) = 1, i.e. there is no cost to staying in the

same place and the utility discount from migration is the product of origin and destination-

specific discounts. This yields that m2(r) = 1/m1(r), i.e. the cost of entering a location is

fully compensated by the benefit from leaving. This symmetry assumption allows to reduce

the dimension of my spatial dynamic migration problem with many locations and makes it

tractable at the global 1° gridded scale with standard resolutions methods.

3.1.2 Consumption and income

I assume a Cobb-Douglas preference structure between goods and a Spence-Dixit-Stiglitz

preference structure between horizontally differentiated varieties for each good, with 1/(1−

ρ) the elasticity of substitution between goods. I assume ρ > 1 in my setting, so that vari-

eties are substitutes. χi is the fixed share of good i in the worker’s expenditure. Consumption

of goods at time t in location r writes:

Ct(r) = ΠK
k=1

[∫ 1

0
ckω

t (r)ρdω

] χi
ρ

(2)

Workers in location r supplies one unit of labor inelastically and receive wage wt(r)

in location r and sector k in which they live in period t so that total income is: yt(r) =
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Lt(r)wt(r)/
(

Πk∈KPk
t (r)

χk
)

where Πk∈KPk
t (r)

χk
is the ideal price index over K sectors.

There is no money lending, so every period agents fully consume their income and Ct(r) =

yt(r). In each location, there is immobile and non-accumulating capital which I call regional

sectoral structures Hk
t as in Caliendo et al. (2019). Hk

t is assumed to be fixed over time and

generate a rent that is fully used to maintain these structures.

3.1.3 Regional amenities

Following Desmet et al. (2018), idiosyncratic non-weather time-invariant fundamen-

tal regional amenities āt(r) are affected by congestion, with Lt(r) the population in lo-

cation r at time t and λ the congestion elasticity of amenities to population density. Fol-

lowing Rudik et al. (2022), regional amenities at(r) are multiplicatively separable in a

weather component exp( f [Tt(r); ζa]), where Tt(r) is a vector of weather variables that

summarizes the high-dimensional climate, f an arbitrary function taken over this distribu-

tion (e.g. orthogonal polynomials, cubic splines) and ζa the set of parameters to be es-

timated that governs how the weather vector affects regional amenities non-linearly. In

my benchmark estimation for ζa, I use third-degree orthogonal polynomials for smooth-

ing across the annual distribution of daily mean temperatures with 1°C temperature bins.

Regional temperature is a function of the biogeochemical cycle, taken from exogeneous SSP

projections, and the biophysical channel driven by endogenous LULC changes. Regional

amenity writes: at(r) = āt−1(r)Lt(r)−λexp ( f [Tt(r); ζa]). Desmet et al. (2018) show that

ut(r) = at(r)yt(r) fully summarizes how individuals value the amenity and production

characteristics of a location. But uncovering the initial distribution of non-weather time-

invariant amenities āt(r), i.e. what makes a location attractive irrespective of economic

activity, is challenging2. I use Caliendo et al. (2019)’s dynamic exact hat algebra approach

to get around this issue.

2Attempts include Desmet et al. (2018), who use model inversion to recover these initial amenities with

subjective well-being survey from the Gallup World Poll, and Cruz and Rossi-Hansberg (2024) with Kummu

et al. (2018)’s gridded data on reconstructed human development index.
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3.1.4 Dynamic exact hat algebra and population dynamics

Following Desmet et al. (2018), the share of the population in location r that moves to

location s from t-1 to t among all possible locations N is:

µt(rs) =
ut(s)1/Ωm2(rs)−1/Ω

∑n∈N ut(n)1/Ωm2(rn)−1/Ω (3)

Following Caliendo et al. (2019) and Balboni (2019), I write the change in the bilateral

matrix of migration flows in dynamic exact hat algebra:

µ̇t+1(rs) =
µt+1(rs)

µt(rs)
=

u̇t+1(s)1/Ω

∑n∈N µt(rn)u̇t+1(n)1/Ω (4)

And, as the idiosyncratic non-weather dependent part of regional amenities are constant

in time: u̇t+1(r) = ẏt+1(r)L̇t+1(r)−λexp [ f (Tt+1(r), ζa)− f (Tt(r), ζa)]. Once I have

migration flows, I build population dynamics for each location, accounting for exogenous

birth and death rates from SSP projections without migrations. In comparison with Cruz

(2021), I do not model endogenous fertility and death rates. Population dynamics, with

Lt(r) = ∑k∈K Lk
t (r), writes:

Lk
t+1(r) = (bt+1(r)− dt+1(r))Lk

t (r)+
N

∑
l=0,l ̸=r

∑
k∈K

µt+1(lr)Lk
t (l)−

N

∑
l=0,l ̸=r

∑
k∈K

µt+1(rl)Lk
t (r)

(5)

Thus, to recover the full dynamics of population under changing climate, I need gridded

projections for births and deaths rates along SSP2-4.5 without migration, a guess for the

change in utility, observed initial bilateral matrix of migration flows µ0(rs), initial distribu-

tion of sectoral population Lk
0(r) and the gridded path of the future annual distributions of

mean daily temperatures. Then, period by period, I can recover migration flows, without

information on the initial distribution of non-weather time-invariant regional amenities.

3.2 Production

3.2.1 Profit maximization

I assume that each 1° economy produces a continuum of varieties ω in sector k with a

Cobb-Douglas production technology. A firm produces qkω
t (r) units of good from sector
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k and variety ω in location r at t with technology qkω
t (r) = zkω

t (r)Lkω
t (r)µk

Hkω
t (r)1−µk

and constant returns to scale with two factors of production, regional sectoral structures and

labour, Hkω
t (r) and Lkω

t (r). I assume away inter-sectoral intra-location trade, i.e. inter-

mediate inputs in the production function. zkω
t (r) is a location-sector-variety random vari-

able drawn independently for each triplet (r, k, ω) from a Frechet distribution: Fkω
t (r) =

exp
[
−Zkω

t (r)(z)−θk
]
. Firms are perfectly competitive. Taking all prices as given, a firm

producing variety ω of good in location r and sector k chooses inputs to maximize static prof-

its: Πkω
t (r) = pk

t
ω(r)qkω

t (r) − wt(r)Lkω
t (r) − Rt(r)Hkω

t (r), where pkω
t (r) is the price

of variety ω of good produced and sold in location r and sector k and input costs are not

sector-specific. The unit price of an input bundle in location r, i.e. the marginal cost of

production, with κk the sector-specific constants, writes: xk
t (r) = κk(wt(r))µk

(Rt(r))1−µk
.

First-order conditions of the firm’s profit maximization problem for sector k, time t and

location r relate regional structure rents to wages and sectoral labour employment levels

Rk
t (r)Hk

t (r) = wt(r)
1−µk

µk Lk
t (r).

3.2.2 Regional productivities

As for amenities, productivity Z in each location r is multiplicatively separable in a vector

of weather variables, where Z̄ is non-weather base productivity:

Zk
t (r) = Z̄k

t (r)exp (g[Tt(r); ζz]) (6)

Non-weather productivity Z̄k
rt grows exogenously3 at a rate ϕ that is not sector-specific.

In each location, the vector of temperatures T depend on both biogeochemical and biophys-

ical channels. In hat algebra, productivity changes in location i, sector k and time t write

Żk
t+1(r) = ϕexp (g[Tt+1(r); ζz]− g[Tt(r); ζz]), where ζz is a set of parameters to be esti-

mated that govern how productivity changes non-linearly across temperature bins and g an

arbitrary function over the regional annual distribution of daily mean temperatures Tt(r).

3Spatial diffusion models might not reflect how innovation spreads (Audretsch and Feldman, 1996).
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3.2.3 Trade, prices, market clearing

I use time-invariant iceberg trade costs τrs from location r to s among N locations. The

trade costs are not specific to sectors. Following Eaton and Kortum (2002), trade shares

write:

λk
t (rs) =

Zk
t (s)

(
xk

t (s)τ
k
rs
)−θk

∑N
l Zk

t (l)
(
xk

t (l)τ
k
rl

)−θk (7)

where λk
t (rs) is the share of expenditures from region s and sector k in region r total ex-

penditures from sector k. The price index for industry k in region r is therefore, with Γk a

constant and 1 + θk > σk:

Pk
t (r) = Γk

(
N

∑
l=1

Zk
t (l)[x

k
t (l)τ

k
rl]

−θk

)−1/θk

(8)

Finally, market clearing at t in r means that labor income in sector k equals the labor

share of global expenditures from location r and sector k product:

wt(r)Lk
t (r) = χk

N

∑
l

λk
t (lr)

[
wt(l)Lk

t (l)
]

(9)

, with χk the share of goods from sector k in location’s expenditures. Combining this equa-

tion for both sectors yield a clearing equation from which guess on wage can be updated for

the period equilibrium.

3.2.4 Production in exact hat algebra

In exact hat algebra, change in unit price of an input bundle is:

ẋk
t+1(r) = (ẇt+1(r))µk

(Ṙk
t+1(r))

1−µk
(10)

and from equation on rents I have that: Ṙk
t+1(r) =

ẇt+1(r)
Ḣk

t+1(r)
L̇k

t+1(r) and Ḣk
t+1(r) = 1. Finally,

in dynamic hat algebra, change in price index writes:

Ṗk
t+1(r) =

(
N

∑
l=1

λk
t (rl)Żk

t+1(l)[ẋ
k
t+1(l)]

−θk

)−1/θk

(11)
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Change in trade flows writes:

λ̇k
t+1(rs) =

Żk
t+1(s)

(
ẋk

t+1(s)
)−θk

∑N
l λk

t (rl)Żk
t+1(l)

(
ẋk

t+1(l)
)−θk = Żk

t+1(s)

(
ẋk

t+1(s)

Ṗk
t+1(r)

)−θk

(12)

3.3 Estimation of dose-response functions

Climate impacts now come into play. They multiplicatively affect sectoral productiv-

ity and amenities, thereby distorting market clearing and the distribution of populations and

economic activities over time. I follow the insights of Eaton and Kortum (2002) that trade

flows contain information on productivity, and insights from Rudik et al. (2022) that mi-

gration flows contain information on amenity value. I use the equilibrium conditions of the

model governing bilateral migration and trade flows to estimate impact of regional climates

on regional amenities and productivities. I follow a procedure close to Rudik et al. (2022)

with more countries, different datasets and relative levels of temperature distributions win-

soring rather than absolute temperature bounds. This procedure guarantees internal validity

of my estimates, i.e. model-consistent amenity and productivity dose-response functions.

Indeed, I leverage the model’s structure at equilibrium, so that the non-linear dose-response

functions account for the dynamic and spatial interactions modelled in my framework. Fi-

nally, the estimates are more robust to spatial autocorrelation than standard panel fixed-effect

approaches.

3.3.1 Regional amenities

The intuition behind this estimation is that an observed change in bilateral migration

flows, controlling for changes in relative populations and outputs, migration costs and coun-

try and time fixed effects, as well as differences in annual distribution of daily mean tem-

peratures between countries allows to identify nonlinear impacts of an additional day in a
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temperature bin on amenity value. Indeed, the model at equilibrium yields:

log
(

µt(rs)
µt(rr)

)
= 1

Ω log
(

āt−1(s)
āt−1(r)

)
− λ

Ω log
(

Lt(s)
Lt(r)

)
+ 1

Ω log yt(s)
yt(r)

+ 1
Ω log(m(r, s)) + 1

Ω ( f (Tt(s), ζa)− f (Tt(r), ζa))

(13)

The left hand side is the ratio of households who move to location s (r, s) versus stay

in the original location r (r, r) from t-1 to t. The right side has five components. The first

component is the ratio of non-weather idiosyncratic amenities, that are time-invariant and

captured by a fixed effect in the regression. The second and third components are the dif-

ference in population and output. The fourth component is the difference in migration costs,

also time-invariant and captured by the origin-destination fixed effect. Finally, I estimate the

non-linear marginal impact of an additional day in a temperature bin on amenity values, ζa,

from f (Tt(s), ζa) − f (Tt(r), ζa). Arbitrarily, I use a third-degree orthogonal polynomial

smoothing across daily 1°C binned mean temperatures for f. For the empirical estimation, I

combine Abel and Cohen (2019) data on five-years international migrations flows from 1990

to 2019 with World Bank population and GDP per country estimates and Hersbach et al.

(2020)’s climate reanalysis (ERA5) for annual distributions of daily mean surface temper-

atures. I process the climate reanalysis to aggregate it at the country level, weighting the

0.25° daily mean temperature observations based on population weight in each country. The

estimation with Poisson Pseudo Maximum Likelihood and ψrs an origin-destination fixed

effect, is:

log
(

µt(rs)
µt(rr)

)
= − λ

Ω log
(

Lt(s)
Lt(r)

)
+ 1

Ω log
(

yt(s)
yt(r)

)
+ 1

Ω ( f (Tt(s), ζa)− f (Tt(r), ζa)) + ψrs + δt + ϵrst

(14)

with a congestion elasticity of regional amenities to population, λ = 0.32, taken from

Desmet et al. (2018). The regression is done on a distribution that is winsorized at 95% so

that the tails of the temperature distribution do not drive results.
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Variable Coefficient p-value

First-Degree Orthogonal Polynomial -2.21e-03 3.84e-03

Second-Degree Orthogonal Polynomial -1.23e-03 3.26e-02

Third-Degree Orthogonal Polynomial -9.26e-04 2.30e-02

Wald test, joint significance 1.81e+01 4.20e-04
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Figure 3: non-linear marginal effect (in %) of an additional day in the 1°C temperature bin

on regional amenities computed from regression (14) with 95% confidence intervals. The

regression is done with 95% winsorized bins [-2°C : 31°C] for 194.032 observations. For the

simulations, I assume that below and above thresholds, marginal effects remain constant.

In this dose-response function, estimates are for myopic households as my global ap-

proach does not allow to solve a fully dynamic migration decisions for 12674 locations.

This approach with myopic households might underestimate negative marginal effects of
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low temperatures on regional amenities as shown in Rudik et al. (2022), which might explain

why the marginal effect of low temperature on regional amenity is positive. As suggested in

Albouy et al. (2016) for US households, we find a positive effect of moderate temperatures

(around 18°C) on amenity value and large and increasing negative value of excess heat on

the amenity value, consistent with observations on US data that households will pay more

on the margin to avoid excess heat than cold. Finally, as amenity values are infered from mi-

gration flows, a drawback of this estimation approach is that standard migration costs which

are commensurable with changes in amenity values cannot be distinguished from the impos-

sibility of migrating, such as administrative barriers, which are not. But I do not think that

there is a reason to believe that it specifically biases a temperature bin over another.

3.3.2 Regional productivities

I follow a close procedure for regional productivities. The intuition behind this estima-

tion is that an observed change in bilateral trade flows at the product level, controlling for

changes in relative input costs, trade costs, and country and time fixed effects, as well as

differences in annual distribution of daily mean temperatures between countries allows to

identify nonlinear impacts of an additional day in a temperature bin on productivity value

for the specific product. At equilibrium, expenditures of region n on industry k goods from

region i write:

Xk
t (rs) =

(
Γk
)−θk Zk

t (s)(xk
t (s))

−θk
(τk

t (rs))−θk

(Pk
t (r))θk Xk

t (r) (15)

Normalizing by importer’s own expenditures Xk
rr in industry k, using the expression for

Zk
it and taking the logarithm on both sides of the equation yields:

log
(

Xk
t (rs)

Xk
t (rr)

)
=
[
g(Tt(s); ζk

Z)− g(Tt(r); ζk
Z)
]
+ log

(
Z̄k

t (s)
Z̄k

t (r)

)
− θklog(τk

t (rs))− θklog
(

xk
t (s)

xk
t (r)

)
(16)

The left hand side is the ratio of expenditures on products of sector k from another region

i to expenditures on products of sector k produced domestically. In equilibrium, it is equal to

four terms. The first term on the right is the marginal difference in productivity between i and

n due to climate impacts. Arbitrarily, I use a third-degree orthogonal polynomial smoothing

across the regional annual distribution of daily 1°C binned mean temperatures. The second
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term is the difference in productivity due to non-weather fundamental differences. The third

term are icerberg trade costs between i and n. The fourth term is the relative price of inputs.

For the empirical estimation, I combine BACI CEPII dataset for yearly sectoral international

trade from 1995 to 2019 with World Bank population and GDP per country and sectors and

Hersbach et al. (2020)’s climate reanalysis (ERA5) for annual distributions of daily mean

surface temperatures at the country level. I process the climate reanalysis to aggregate it at

the country level, weighting the 0.25° daily mean temperature observations with GHSL-POP

population weights. I include tariffs in the fixed effects as data on tariffs (preferential and

most-favoured nation) and non-tariffs trade costs τ from WITS database is very incomplete.

I estimate the following regression with PPML:

log
(

Xk
t (rs)

Xk
t (rr)

)
= Ik ∗

[
g(Tt(s); ζk

Z)− g(Tt(r); ζk
Z)
]
+ ζXXk

t + ρk
t + ϕk

ni + ϵk
nit (17)

with ρk
t sector-year fixed effects and ϕk

ni importer-exporter-sector fixed effects. With Xt, I

proxy for unobserved relative input costs with sectoral GDP per capita. Values for θk are

taken from Caliendo and Parro (2015). Estimates are done at ISIC Rev.3 product level and

the sector-specific response functions come from a regression where I interact the response

function g with a set Ik of two sector dummy variables: agriculture and non-agriculture. The

sector-specific regression is done on a distribution that is winsorized at 95%, so that the tails

of the temperature distributions do not drive the results.

Variable Coefficient p-value

First-Degree Orthogonal Polynomial - Agriculture 1.57e-02 2.81e-08

First-Degree Orthogonal Polynomial - Non Agriculture -2.02e-02 9.58e-02

Second-Degree Orthogonal Polynomial - Agriculture -3.20e-02 0.00e+00

Second-Degree Orthogonal Polynomial - Non Agriculture -2.22e-02 8.75e-04

Third-Degree Orthogonal Polynomial - Agriculture -1.70e-02 0.00e+00

Third-Degree Orthogonal Polynomial - Non Agriculture -2.07e-02 4.49e-03

Wald test, joint significance (Agriculture) 2.62e+02 0.00e+00

Wald test, joint significance (Non Agriculture) 3.01e+01 1.31e-06
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Figure 4: non-linear marginal effect of an additional day in the 1°C temperature bin on re-

gional sectoral productivities computed from regression (14) with 95% confidence intervals

and third-order orthogonal polynomials. The regression is done with 95% winsorized bins

[-2°C : 31°C] for N=14.527.500 observations. For the simulations, I assume that below and

above these thresholds, marginal effects remain constant.

As in Rudik et al. (2022), and consistent with previous literature (Burke et al., 2015), I

find substantial evidence of negative impacts from elevated mean daily temperatures on sec-

toral productivity, affecting both agricultural and non-agricultural activities. Surprisingly,

the marginal effects are more pronounced in non-agricultural sectors, even if confidence

intervals are wider. Two factors may explain this finding. First, I employ a winsorizing tech-

nique at 31°C computed from the temperature distribution rather than an absolute threshold.

This approach may wrongly reflect extreme temperature effects on agriculture, particularly

at very high temperatures, due to a lack of sufficient observations. Second, since the analysis
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infers climate change impacts on sectoral productivity from trade flows, the estimates are on

products and people that are engaging in international trade. This might distort the estimated

damage since agricultural sectors involved in export may be more competitive and adaptable,

potentially underestimating the full extent of climate impacts. Related to this interpretation,

a limitation of my estimation approach is that it does not allow for the estimation of dose-

response functions for certain goods and services that are either untraded or non-tradable,

such as transportation, education, healthcare, real estate, and local services like restaurants.

For agricultural sectors, I observe a bell-shaped relationship, with an optimal temperature

for productivity around 20°C, consistent with results such as those of Conte et al. (2021).

A key limitation in comparing my results to prior studies lies however in the use of daily

average temperature bins rather than annual averages, which alters the form of temperature-

productivity relationships. For non-agricultural sectors, I observe positive productivity ef-

fects for non-agricultural sectors on colder days (around and below 0°C). This result might

be related to the differentiated effects identified by Burke et al. (2015), where wealthier

countries—which might be disproportionately represented in trade data for non-agricultural

products—demonstrate a greater capacity to adapt to lower temperatures. This distinction

between rich and poor countries in their responses to temperature variations could explain

the observed resilience of non-agricultural productivity to colder conditions.

4 Numerical results

4.1 Model resolution

Given the distribution of labor across markets Lt ≡ {Lk
t (r)}

N,K
r=1,k=0, location-industry

fundamental productivities Zt ≡ {Zk
t (r)}

N,K
r=1,k=0, location-specific fundamental amenities

at ≡ {at(r)}N
r=1, I define a time-t momentary equilibrium as a vector of wages wt ≡

{wt(r)}N
r=1 and aggregate price index Pt ≡ {Pt(r)}N

r=1 satisfying equilibrium conditions

of the static multi-regional and multi-industry trade model. Let µ̇t ≡ {µ̇t(rs)}N,N,∞
r=1,s=1,t=1,

ȧt ≡ {ȧt}∞
t=1, u̇t ≡ {u̇t}∞

t=1 be migration shares, amenities, and lifetime utilities changes re-

spectively. Given an initial allocation of labor Lk
0, initial migration flows, initial sectoral trade
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flows, initial time-invariant exogenous fundamentals (migration costs, non-weather funda-

mental productivities and amenities, local structures), and a path of time-varying exogenous

fundamentals (amenities, productivities, land uses and climate change), I define a sequential

competitive equilibrium as a sequence of {Lt, µt, ut, wt}∞
t=0 that solves the temporary equi-

librium at each time t. Finally, I define a stationary equilibrium as a sequential competitive

equilibrium such that the sequence {Lt, µt, ut, wt}∞
t=0 is constant for every t. The intuition

behind this approach is that observed data (migration flows, wages) are a good proxy for un-

observed characteristics (migration costs, productivities) and that this observed data provides

sufficient information to bypass the estimation of some fundamentals, for instance idiosyn-

cratic non-weather regional amenities, to project future decisions by agents that include the

distribution of this unobserved characteristics.

Some more datasets are needed at 1° gridded level for the simulations. I use 2015 GHSL-

POP gridded population distribution and population-weighted country-level estimates of the

share of employment in labour from World Bank. Exogeneous productivity paths are taken

from SSP database and downscaled to 1° zone for SSP2 based on 2015 population coverage.

For productivity paths, I take the mean of two modelling approaches for SSP2: OECD Env-

Growth and IIASA. Population projections are taken from KC et al. (2024) SSP2 projections

without migration. I use Conte et al. (2021) gridded sectoral initial bilateral sectoral trade

flows. Agricultural and non-agricultural wages are computed using Kummu et al. (2018)

gridded estimates of GDP per capita and population-weighted country-level estimates of the

labour share of total income from ILOSTAT.

The initial bilateral migration flows are computed from Kummu et al. (2018) and Abel

and Cohen (2019): the gridded flows are constructed so that they match international mi-

gration flows, and internal migrations are built from within-country population-weighted net

gridded migration stocks. There are two main issues with the modeling of migrations. First,

when migration are fully dynamic, models cannot be solved at both global scale and fine

resolution, while it would be useful to keep both characteristics. Applications with fully dy-

namic decisions (Caliendo et al., 2019; Balboni, 2019; Rudik et al., 2022) are for a subset of

countries4. A second issue regarding migration dynamics is data availability at the right res-

4Recent advances include using deep neural networks (Azinovic et al., 2022) or perturbation approaches
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olution: data is scarce, especially outside the USA. I keep a worldwide resolution (Cruz and

Rossi-Hansberg, 2024) rather than restricting the analysis to the USA (Caliendo et al., 2019;

Bilal and Rossi-Hansberg, 2023) or subset of countries for which rich migration data are

available (Rudik et al., 2022). I reconstruct gridded migration flows from both international

migration flows and gridded net migration stocks in a simplistic way that probably under-

estimate them but this first-order and fully explicit approximation relies on best-available

gridded data products (Kummu et al., 2018; Abel and Cohen, 2019) and can be checked

for robustness. Another avenue would be to invert the model to recover fundamentals such

as migration costs, but it is also based on important modelling assumptions regarding the

estimation of regional fundamental amenities.

4.2 Counterfactual climates and policies

To evaluate the aggregate welfare consequences of global warming and the welfare con-

sequences of the biophysical channels, I compare at the gobal scale the present discounted

value of regional utilities that are not idiosyncratic, namely,

W0 = ∑
r∈N

∞

∑
t=0

βtu̇t+1(r) = ∑
r∈N

∞

∑
t=0

βt ȧt+1(r)ẏt+1(r) (18)

In my approach, as in Cruz and Rossi-Hansberg (2024), I thus focus on changes in how

individuals value the amenity and production characteristics of a location under changing

climate. A drawback of this choice, discussed in Desmet et al. (2018), is that the welfare

cost computed does not include two components: the mobility costs incurred to get there

and the idiosyncratic preferences of individuals who live there. I simulate the model in three

alternative settings.

Simulation 1 - without climate change In this first benchmark simulation, I compute

the distribution of future sectoral economic activities, population and trade flows that clear

markets in each location at all future periods under the assumption that there is no climate

change, i.e. no deviation in the annual distribution of daily mean temperatures in each loca-

tion. This simulation is used as a baseline.

(Bilal and Rossi-Hansberg, 2023) could allow to keep both fully dynamic decisions and global 1° gridded

approach. I leave work on these methodologies for future research.
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Simulation 2 - under biogeochemical SSP2-4.5 In the second simulation, I use bias-

adjusted (Lange, 2019) and down-scaled projections from five CMIP6 Earth System Models

forced with SSP2-RCP4.5 emissions under the assumption of fixed 2015 land use: GFDL-

ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0. More specifically, I construct

a synthetic annual distribution of daily mean temperatures for each 1° location taking the

average over five years. Thus, I can have a better proxy of the underlying climate distribution

from which weather from a given year is drawn and capture some internal variability in

climate, for instance due to El Niño. I compute the distribution of future sectoral economic

activities, population and trade flows that clear markets in each location at all future periods

under these nonlinear deformations in the annual distributions of daily mean temperatures in

each location. The deviation between this simulation and the first one allows to compute the

aggregate and distributional welfare impact of exogenous biogeochemical change.

Simulation 3 - under both biogeochemical and biophysical SSP2-4.5 In the third sim-

ulation, I add the biophysical impacts driven by urban and agricultural land demands to

the exogenous biogeochemical projections, using the mapping between LULC changes and

biophysical impacts that applies in this specific 1° Koppen Geiger climate zone at a given

time period. The distribution of daily mean temperature in year t is the sum of exogeneous

SSP2-4.5 scenarii and biophysical channels over each month within a year (net transitions

to croplands) and over a year (transitions to urban areas). The comparison between this

simulation and the second one allows to compute the aggregate and distributional welfare

consequences of biophysical channels.

4.3 Benchmark biogeochemical climate impacts (SSP2-4.5)

First, I plot on the left graph of Figure (5) the 2100 future climate under SSP2-4.5 with

respect to the 2015 distribution of temperatures, treating each location as a unit. The distor-

tion of annual daily mean temperature distributions is less pronounced than in SSP5-8.5 or

equivalent carbo-intensive pathways previously assessed (Cruz, 2021; Krusell and Smith Jr,

2022). Indeed, annual average temperature increases only from 15°C in 2015 to 17.3°C in

2100 over our gridded locations of interest. On the right graph on Figure (5), I compare two
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shifts in the global intra-annual distribution of daily mean temperatures between 2015 and

2100. In red, I plot the difference in the frequency of a given mean daily temperature in the

annual distribution using climate projections. In green, I apply a shape-preserving shift in

annual mean to the 2015 distribution in blue on the left graph. This shift is approximate and

illustrative as I round this shift again to match it to climate projections. Even when aggre-

gated to the global level, there are large changes in the shape of the intra-annual distribution

of daily mean temperatures that are not perfectly summarized by the annual mean deviation.
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Figure 5: Left Synthetic global annual distributions of daily mean temperatures in 2015 (in

blue) and 2100 (in red), under SSP2-4.5, for all gridded locations studied in the paper. Dotted

lines represent average annual mean surface temperature. I treat each location as one unit.

Right Shifts from 2015 to 2100 in the frequency of daily mean temperatures per temperature

bin (in number of days) for climate projections (in red) and for a synthetic shape-preserving

approximate annual mean shift where the annual mean increase observed between the two

distributions 2015 and 2100 is added to each bin in the 2015 distribution.
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This non-linearity is accounted for in our approach where we use the whole distribution

of daily mean temperature to estimate climate impacts.

I analyze both the aggregate and distributional welfare effects of climate change un-

der SSP2-4.5, focusing on locations where data is available (e.g. Libya is excluded due to

missing data) and where population and economic activity were present in 2015. Thus, my

analysis centers on the intensive margin of adaptation, considering only existing areas and

not the extensive margin—such as migration to currently uninhabited regions or the emer-

gence of economic activity in areas with none in 2015. Projections on this extensive margin

would require a level of external model validity that is hard to achieve. In Figure 7, I present

the distribution of changes in amenities and sectoral productivities across 12,674 gridded

locations, using estimated dose-response functions.
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Figure 6: Ratio of amenity (left), agricultural productivity (middle), non-agricultural pro-

ductivity (right) changes between scenario 2 with SSP2-4.5 forced with biogeochemical an-

thropogenic impacts and scenario 1 without climate change. For sectoral productivities, I

winsorize the top of the distribution at 1.5 for illustration.
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This graph yields three main conclusions. First, the average impact of climate change is

negative for amenities and sectoral productivities. As in Cruz (2021) and as suggested by

our dose-response functions, the marginal impact on amenity is one order of magnitude be-

low the marginal nonlinear impact of temperatures on sectoral productivities. Indeed, mean

amenity changes are 5% with respect to baseline, while mean sectoral productivy changes

are as large as 28% and 48% for agricultural and non-agricultural productivities. Second,

in comparison with previous estimates yielding benefits from climate change for amenities

and sectoral productivities in many locations, the impacts of climate change are negative

for almost all locations when the entire intra-annual temperature distribution is considered.

Even if some moderate daily mean temperatures have positive impacts on these variables in

our dose-response functions, the aggregate effect is negative. Third, the impacts for sectoral

productivities are much more dispersed than the impacts of climate change on amenities:

most of the spatial heterogeneity will therefore come from these channels.

I then study how these changes in sectoral amenities and productivities translate into

welfare impacts, once the adaptation of agents is taken into account.
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Figure 7: Ratio of welfare changes between scenario 2 with SSP2-4.5 climate impacts and

scenario 1 without climate change, plotted with smoothed transitions between gridded loca-

tions (left) and on an histogram with the dotted average welfare change of 1% (right).
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In Figure (7), I plot the distribution of changes in welfare in scenario 2 with biogeo-

chemical climate change with respect to baseline scenario 1 without climate change. Figure

(7) highlights two key findings. First, the mean welfare change under the SSP2-4.5 sce-

nario is negative, with a 0.7% decline in welfare, equivalent to the 0.7% decrease estimated

by Cruz (2021) for RCP6.0, despite RCP6.0 being a more carbo-intensive pathway. Sec-

ond, with few exceptions driven by specific regional climates, such as the southern Arabian

Peninsula, the marginal impact of climate change under SSP2-4.5 is negative across most

regions. Contrary to previous estimates, I find no evidence of marginal benefits from climate

change in northern locations. Since my analysis incorporates the intra-annual distribution of

daily mean temperatures interacted with non-linear dose-response functions based on these

distributions, the resulting welfare changes do not follow a simple isomorphic relationship

to annual time-invariant temperature scalers that mimic polar amplification. The changes in

annual temperature distributions are more complex than a uniform shift in the mean. These

non-linear warming patterns, when combined with the non-linear response of welfare to

temperature variations within the year, result in non-linear welfare impacts.

4.4 Counterfactual exogenous biophysical impacts (SSP2-4.5)

Building on the baseline estimates that include the biogeochemical impacts of climate

change, I now assess the relative contribution of biophysical channels through LULC changes—

effects of albedo, evapotranspiration, and surface roughness. Figure 8 illustrates the distri-

bution of welfare changes in scenario 3, which incorporates biophysical channels, relative to

scenario 2, where only climate change impacts from the carbon cycle are considered without

biophysical effects. These welfare changes are expressed as a fraction of the total change

between scenarios 2 and 1, reflecting the standard climate impact estimates under SSP2-4.5,

excluding biophysical channels. Thus, the estimates give the share the biophysical impacts

represent in the standard biogeochemical estimates of the welfare impacts of climate change

along SSP2-4.5.
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Figure 8: Share of welfare changes (in %) between scenario 3 with both SSP2-4.5 bio-

geochemical and biophysical channels and counterfactual scenario 2 without biophysical

channels in the change between scenario 1 and scenario 2, plotted on a map with smoothed

transitions between gridded locations (left) and on an histogram with the dotted average wel-

fare change (right). The distribution is 98% winsorized.

Figure (8) provides two key insights. First, biophysical channels account for a non-

negligible portion of the welfare impacts of climate change typically estimated from bio-

geochemical factors under SSP2-4.5, i.e. when temperature downscaling is assumed to be

linear, time-invariant and exogenous to regional economic activities. Specifically, these re-

gional biophysical processes, driven by LULC changes, contribute approximately 2.4% to

the overall welfare impacts currently attributed to climate change. Regional economic activ-

ity does shape regional climate impacts. Second, the effects of these biophysical channels

are predominantly negative across most regions.

Once I have retrieved the aggregate welfare impact of the biophysical channels, I estimate

their distributional impacts with respect to standard biogeochemical climate impacts. In

Figure (9), I plot the distribution of welfare impacts under biogeochemical impacts (left),

under both biogeochemical and biophysical impacts (middle), and the distribution of the

share of biophysical welfare impacts with respect to standard biogeochemical impacts (right)
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against the log of 2015 GDP per capita (ppp USD).
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Figure 9: Distributional impacts of biogeochemical and biophysical channels along SSP2-

4.5 Left Biogeochemical only with respect to no climate change (scenario 2 and scenario

1) Middle Both biogeochemical and biophysical impacts with respect to no climate change

(scenario 3 and scenario 1). Right Deviation between scenario 2 and scenario 3 (scenario 3

and scenario 2). The red lines represent correlation, fitted using a linear regression model.

Figure (9) shows that the biogeochemical climate impacts are regressive, affecting more

the poorest 2015 location. Indeed, a simple linear regression suggests that a 1% increase

in GDP per capita yields a 0.1% decrease in welfare change with respect to the baseline

simulation without climate impacts. Biophysical impacts further exacerbate the regressivity

of biogeochemical impacts, by a 0.001% decrease in marginal welfare impacts for a 1%

increase in 2015 GDP per capita. Thus, biophysical channels imply a 1% increase in the

slope of the regressivity of standard biogeochemical climate impacts.
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5 Discussion

As our understanding of the mechanisms through which human activities and climate

impacts interact goes further, I investigate a mechanism qualitatively distinct from the tra-

ditional biogeochemical one: the biophysical channel by which LULC changes bring re-

gional climate impacts because of changes in albedo, evapotranspiration and soil roughness.

While this mechanism might be negligible at a global scale in the first-order computation

of the impacts of climate change, it does have heterogeneous regional effects that should

be scrutinized carefully because they can cascade into large aggregate welfare effects and

distributional consequences. In this paper, I quantify how and how much the regional bio-

physical channel of climate impacts driven by land use land cover changes matter. I first

build a reduced-form representation of the regional biophysical feedbacks. Then, I leverage

a dynamic quantitative spatial economic model applied to climate change with an explicit

modelling of adaptation through trade, migration and changes in sectoral specialization.

Furthermore, I estimate model-consistent dose-response functions of regional amenities and

sectoral productivities to changes in the annual distribution of daily mean temperatures. Fi-

nally, I take the theoretical setting to the data at 1° gridded global scale. I solve the model

with dynamic exact hat algebra and compare a baseline with forward-looking agents under

‘middle-of-the-road’ SSP2-4.5 without regional biophysical feedback to the counterfactuals

with regional LULC changes and biophysical feedbacks. I compute the distributional and

aggregate welfare impact for benchmark model and under counterfactual climates.

In conclusion, my analysis demonstrates that regional economic activity plays a signif-

icant role in shaping regional climate impacts. By incorporating biophysical channels into

the assessment of SSP2-4.5, I find that these channels account for an additional 2.4% of the

biogeochemical impacts on welfare, on average. The effects are unevenly distributed, influ-

enced by both socioeconomic factors—such as urban land-use changes and transitions from

shrublands or forests to croplands—and by shifting climate zones. Notably, the impacts of

biophysical channels are predominantly negative across regions and, like biogeochemical

effects, are regressive, disproportionately affecting lower-income regions based on 2015 in-

come levels. In both scenarii of future climate impacts, interacting intra-annual warming

35



patterns with non-linear damage functions from temperature bins implies that nearly all re-

gions will suffer from the impacts of climate change, with no significant benefits expected in

the Northern Hemisphere.

A future direction, which is already underway for this paper, is to endogenize marginal

deviations from SSP2-4.5 in land-use change. I use the exogenous MESSAGE-Globiom

scenario SSP2-4.5 as a first approximation. But around this benchmark SSP2-4.5 from which

I calibrate productivity and population exogenous paths, climate impacts and endogenous

adaptation decisions (migration, sectoral specialization and trade) drive marginal changes in

LULC changes in comparison with the standard MESSAGE-Globiom scenario. I could map

marginal changes in the model input stemming from endogenous adaptation decisions in my

quantitative spatial model to changes in model output around this scenario with a flexible

statistical relationship, e.g. a surrogate model with gaussian processes (GP) to emulate the

more complex land-use model. Alternative avenues could be taken, each with its limits. First,

I could use reduced-form econometrics on historical data, but there is no exogenous variation

to leverage, be it an instrument or a quasi-experimental setting. Panel fixed effect approaches

(Chen et al., 2020) are affected by endogeneity and simultaneity as the authors have no

control over the data-generating process. Second, I could build a complete dynamic model

of land use changes including a market for crops, for land prices, etc., as well as assumptions

about agricultural and urban policies. But the dynamic relation in the competition for land

use would be computationally demanding and hard to calibrate at the global 1° gridded

scale. This GP approach might be adapted for four main reasons. First, it allows me to map

marginal deviations around an established exogenous scenario SSP2-4.5 building on robust

land-use models. Second, I have control over the data-generating process, both exogenous

scenario for drivers and mechanistic relations between variables of interest. Third, the GP

is flexible: it is a non-parametric regression tool where I do not define a specific functional

form to the input-output mapping ex-ante and I can handle non-linear relations. Fourth, GP

allows uncertainty quantification as they are probability distribution over a function space.

There are other limits to my approach. First, I should include other impacts, as land use

land cover changes have large impacts on other planetary limits, for instance biodiversity.

Second, I could estimate counterfactual policies to reduce the welfare cost of these biophys-
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ical channels, for instance zero net land take or irrigation policies (Braun and Schlenker,

2023). Finally, I would like to explore further impacts, for instance precipitation (Devaraju

et al., 2015; Smith et al., 2023) and its interaction with temperature changes (e.g. wet bulbs).

Water cycle indeed raises concerns not only because of deforestation (Grosset et al., 2023),

but also following urbanization (Sui et al., 2024). This work is left for further research.
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A Appendix

A.1 Migration in hat algebra

I write the change in bilateral migration flows in dynamic exact hat algebra. Starting from

the initial equation for bilateral migration flows, I write the equation in time differences:

µ̇r,s,t+1 =

ut+1(s)1/Ωm(s)−1/Ω

∑n∈N ut+1(n)1/Ωm(n)−1/Ω

ut(s)1/Ωm(s)−1/Ω

∑n∈N ut(n)1/Ωm(n)−1/Ω

(19)

Then, as migration costs are assumed to be time-invariant :

µ̇r,s,t+1 =
u̇t+1(s)1/Ω

∑n∈N ut+1(n)1/Ωm(n)−1/Ω

∑n∈N ut(n)1/Ωm(n)−1/Ω

(20)

I have that:

µ̇r,s,t+1 =
u̇t+1(s)1/Ω

∑n∈N ut+1(n)1/Ωm(n)−1/Ω ut(n)1/Ωm(n)−1/Ω

ut(n)1/Ωm(n)−1/Ω

∑n∈N ut(n)1/Ωm(n)−1/Ω

(21)

This yields the equation of interest.

A.2 Profit maximization

Profit in sector k (i.e. good i), location r, writes (symmetry between varieties ω):

Πk
t (r) = pk

t (r)z
k
t (r)Lk

t (r)
µk

Hk
t (r)

1−µk − wt(r)Lk
t (r)− Rk

t (r)Hk
t (r) (22)

First-order conditions of profit maximization problem write:

∂Πk
t (r)

∂Lk
t (r)

= 0 (23)

∂Πk
t (r)

∂Hk
t (r)

= 0 (24)

Thus:

µk pk
t (r)z

k
t (r)Lk

t (r)
µk−1Hk

t (r)
1−µk − wt(r) = 0 (25)

(1 − µk)pk
t (r)z

k
t (r)Lk

t (r)
µk

Hk
t (r)

−µk − Rk
t (r) = 0 (26)
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Replacing pk
t (r) yields:

Rk
t (r)Hk

t =
1 − µk

µk wt(r)Lk
t (27)

A.3 Prices and bilateral trade flows in exact hat algebra

Starting from the definition of prices (8), I write:

Ṗk
n,t+1 =

 N

∑
l=1

Zk
l,t+1[x

k
l,t+1τk

nl,t+1]
−θk

∑N
m=1 Zk

m,t[x
k
m,tτ

k
nm,t]

−θk

−1/θk

(28)

Multiplying and dividing each element in the summation just as what I have done for

migration:

Ṗk
n,t+1 =

 N

∑
l=1

Zk
l,t+1[x

k
l,t+1τk

nl,t+1]
−θk Zk

l,t[x
k
l,tτ

k
nl,t]

−θk

Zk
l,t[x

k
l,tτ

k
nl,t]

−θk

∑N
m=1 Zk

m,t[x
k
m,tτ

k
nm,t]

−θk


−1/θk

(29)

Using trade flows from equation (12), I have the equation of interest (as trade costs are

time invariant). Similarly for trade flows, I multiply and divide the numerator of (12) by

Zk
it
(
xk

itτ
k
nit
)−θk

and do the same for each element of the summation of the denominator:

λk
nit+1 =

Zk
it+1

(
xk

it+1τk
nit+1

)−θk Zk
it(xk

itτ
k
nit)

−Θk

Zk
it(xk

itτ
k
nit)

−θk

∑l Zk
lt+1

(
xk

lt+1τk
nlt+1

)−θk Zk
lt(xk

ltτ
k
nlt)

−θk

Zk
lt(xk

ltτ
k
nlt)

−θk

(30)

Which yields:

λk
nit+1 =

Żk
it+1

(
ẋk

it+1
)−θk

Zk
it
(
xk

itτ
k
nit
)−θk

∑l Żk
lt+1

(
ẋk

lt+1

)−θk

Zk
lt

(
xk

ltτ
k
nlt

)−θk
(31)

Then, dividing by the sum:

λ̇k
nit+1 =

Żk
it+1

(
ẋk

it+1
)−θk

∑l λk
nltŻ

k
lt+1

(
ẋk

lt+1

)−θk (32)
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A.4 Welfare

We study:

W0 = ∑
r∈N

∞

∑
t=0

βtu̇t+1(r) = ∑
r∈N

∞

∑
t=0

βt ȧt+1(r)ẏt+1(r) (33)

We have the equation for amenity changes. Changes in real income write:

ẏt+1(r) =

(
∑K

k=1(Lk
t+1(r)/Lt+1(r))wk

t+1(r)
)

(
Πk∈K Ṗk

t (r)χk
) (

∑K
k=1(Lk

t (r)/Lt(r))wk
t (r)

) (34)

A.5 Dose-response functions

At equilibrium:

µr,s,t

µr,r,t
=

ut(s)1/Ωm(r, s)−1/Ω

ut(r)1/Ωm(r, r)−1/Ω =
(at(s)yt(s))

1/Ω m(r, s)−1/Ω

(at(r)yt(r))
1/Ω m(r, r)−1/Ω

(35)

Which yields:

log
(

µr,s,t
µr,r,t

)
= − λ

Ω log
(

Lt(s)
Lt(r)

)
+ 1

Ω log
(

āt−1(s)
āt−1(r)

)
+ 1

Ω log(m(r, s)) + 1
Ω log yt(s)

yt(r)
+ 1

Ω ( f (Ts,t, ζa)− f (Tr,t, ζa)) (36)

A.6 Migration data

The key gap in our simulations is the matrix of intersectoral bilateral migration flows.

First of all, I do no have data on sectoral migration at this grid level and at the global scale:

I thus focus on bilateral migration flows without sector-specific mobility. Then, I combine

a dataset Minter
c1,c2 of 5-years international bilateral migration flows between c1 (out) and c2

(in) for each pair of N countries from 2010 to 2015 (Abel and Cohen, 2019) with gridded

data of net migration stocks from 2010 to 2015 Mintra
z for each 1° gridded zone z from

Kummu et al. (2018). The procedure, detailed in annex, has two steps. First, I compute the

probability of international inflows and outflows for each zone times country based on net

migration stocks and assign international migration flows based on these probabilities. Then,

once international migration flows are deducted from net gridded migration stocks for each

zone*country, I compute within-country migration flows between each region zone*country

based on probability of intra-migration flows given gridded net migration stocks net of inter-

country migration flows. I then aggregate the flow at 1° zone level. My procedure probably
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underestimates migration flows (i.e. overestimates migration costs) but I unfortunately do

not have gridded births and deaths data to reconstruct migration flows à la Abel and Cohen

(2019). For robustness, I run simulations with lower migration costs.

• Compute the share sz,c,L2010 of each 1° zone z that is in country c based on 2010

population at level 0.1°. Compute the net migration stock Mintra
z,c = sz,c,L2010 ∗ Mintra

z

of each pair (c,z) based on these population weights

• Normalize net migration stock at country c level for inflows

M̄in f lows
z,c = Mintra

z,c + minc(Mintra
z,c )

which yields a probability of international inflows for each (c,z)

Pin f lows
z,c = M̄in f lows

z,c /sumc(M̄in f lows
z,c )

• Normalize net migration stock at country c level for outflows, i.e.:

M̄out f lows
z,c = −

(
Mintra

z,c − maxc(Mintra
z,c )

)
(37)

, which yields a probability of international outflows for each (c,z):

Pout f lows
z,c = M̄out f lows

z,c /sumc(M̄out f lows
z,c ) (38)

• Assign bilateral international migration flows (in and out) for each country c to each

zone z based on these probabilities to obtain (1) MBz1,z2 the 1° bilateral matrix of in-

ternational migration flows and (2) Mintra−net
z,c , i.e. stock of migration flows at gridded-

country level net of international migration flows.

• For each zone z1 in c:

1. If stock in z1 is positive, compute the probability of receiving internal flows from

all other z2. Normalize net migration stock at country c level for inflows for all

z2, i.e. M̄in f lows,net
z2,c = Mintra,net

z2,c + minc(Mintra,net
z2,c ), which yields a probability

of internal inflows for each (c,z1,z2), Pin f lows,net
z2,c = M̄in f lows,net

z2,c /sumc−z1(M̄in f lows,net
z2,c )

2. If stock in z1 is negative, compute the probability of sending internal flows to all

other z2. Normalize net migration stock at country c level for inflows for all z2,
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i.e. M̄in f lows,net
z2,c = −(Mintra,net

z2,c − maxc(Mintra,net
z2,c ), which yields a probability

of internal inflows for each (c,z1,z2), Pout f lows,net
z2,c = M̄out f lows,net

z2,c /sumc−z1(M̄out f lows,net
z2,c )

• Add these internal flows to our matrix MBz1,z2.

A.7 Algorithm

Algorithm. Solve period by period the sequential competitive equilibrium given an ini-

tial allocation (Lk
0, wk

0, µi,n,0, λi,n,0) and an anticipated convergent sequence of changes in

fundamentals, {Θ̇t}∞
t=0 (regional productivities and amenities affected by exogeneous bio-

geochemical climate impacts). without changes in LULC and biophysical channel. From this

baseline scenario, I compute distributional and aggregate welfare impact of climate change

along SSP2-4.5. The counterfactual [without climate change] is the same algorithm but with

no climate impacts.

• Scenario 1: without climate impacts. In this baseline scenario, I compute the distribu-

tion of people and activity without future climate impacts.

• Scenario 2: with SSP2-4.5 climate impacts, without biophysical impacts. In this first

counterfactual, I compute the distribution of people and activity and the aggregate and

distributional welfare impacts of exogenous SSP2-4.5 without land use changes.

• Scenario 3: with SSP2-4.5 climate impacts and exogenous biophysical impacts. In

this second counterfactual, I compute the distribution of people and activity and the

aggregate and distributional welfare impacts of exogenous SSP2-4.5 with exogenous

land use changes from MESSAGE-Globiom model.

[H] Resolution

Inner loop solves the static equilibrium at each time period t. Outer loop computes path for fundamental

variables given market clearing at each time t in each location r.

• Make an initial convergent (to 1 when T large) guess for the path of expected lifetime utilities expressed

in time differences {u̇0
r,t}

T,N
t=0,r=1, where the superscript (0) indicates a guess.;

• While [outer loop] convergence criteria not met (tolerance, nb of loops)
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1. For all t, use {u̇(0)
r,t }

T,N
t=0,r=1 and {µr,n,0}N,N

r=1,n=1 to solve for the path of {µr,n,t}T,N,N
t=0,r=1,n=1.

2. For all t, use equation for population dynamics, {µr,n,t}T,N,N
t=0,r=1,n=1,{Lk

r,0}
T,N,K
r=1,k=1 and SSP2 ex-

ogenous birth & death rates scenarii to get {Lk
r,t}

T,N,K
t=0,r=1,k=1

3. Select climate scenario and recover the path of regional productivity and amenity changes in each

r {Żk
t (r)}

T,N,K
t=0,r=1,k=1, {ȧt(r)}T,N

t=0,r=1 from the scenario using estimated dose-response functions

and exogenous productivity growth rates.

4. For [inner loop] each period t > 0

– Define a guess for wages {ẇ(0)
r,t+1}

T,N
t=0,r=1

– Obtain {ẋk
r,t+1}

N,K
r=1,k=1 using {Lk

t (r)}
N,K
r=1,k=1 and guess for {ẇr,t+1}N

r=1.

– Use {ẋk
r,t+1}

N,K
r=1,k=1, {Żk

t (r)}
N,K
r=1,k=1 and {λk

rn,t}
N,N,K
r=1,n=1,k=1 to obtain {Ṗk

r,t+1}
N,K
r=1,k=1

– Obtain {λk
rn,t+1}

N,N,K
r=1,n=1,k=1 from {Ṗk

r,t+1}
N,K
r=1,k=1, {Żk

t (r)}
N,K
r=1,k=1, {ẋk

r,t+1}
N,K
r=1,k=1 and

{λk
rn,t}

N,N,K
r=1,n=1,k=1

– Compute {ẇr,t+1}N
r=1 and check if market clears in each location

– Update {ẇ(0)
r,t+1}N

r=1 if market does not clear

– If market clears at t, compute aggregate price index {Ṗr,t+1}N
r=1 using fixed share of each

good in worker’s expenditure

5. Repeat for each t to obtain at each period the momentary equilibrium and recover full paths of

{ẇn,t+1}T
t=0 and {Ṗr,t+1}T,N

t=0,r=1, which gives change in worker’s real income.

• For each t, compute {u̇t+1(r)}T,N
t=0,r=1 and change in worker’s real income using {ẇr,t+1}T,N

t=0,r=1 and

{Ṗr,t+1}T,N
t=0,r=1. Check if {u̇t+1(r)}T,N

t=0,r=1 ≈ {u̇(0)
t+1(r)}

T,N
t=0,r=1 according to convergence criterion.

If not, go back to first step and update initial outer guess.
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