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Abstract

Understanding stochastic interactions between climate change, the macroeconomy and Earth

subsystems with non-linear, self-sustaining and debated dynamics is a major challenge with

implications both for global climate policy and regional subsystem’s management. We study

Earth subsystems with three properties: their dynamics have an impact on climate change, cli-

mate change has an impact on their dynamics and their dynamics are not entirely determined by

climate change. We analytically derive the three channels through which interactions between

subsystem’s idiosyncratic risk and aggregate climate risk over intertemporal welfare affect opti-

mal climate policy. First, subsystems have direct scaling effect through their expected feedback

on global climate. Second, perturbations in the subsystem caused by carbon emissions reduce

its long-term survival and therefore affect intertemporal welfare because of future feedbacks on

global climate. Third, subsystems have various insurance values. We also highlight how an ex-

plicit reduced-form subsystems’s geophysical dynamics improves their management, taking into

account the changing ability of the subsystems to self-perpetuate over time: we introduce the so-

cial cost of the dynamic subsystem (SCDS). We apply our framework in a calibrated stochastic

quantitative model of the Amazon rainforest whose fate is fiercely debated. In our benchmark

quantitative specification, an endogenous and explicit modeling of the Amazon rainforest im-

plies a 15% risk premium on the social cost of carbon (SCC) at the global scale and a SCDS

that is worth 16% of the standard stochastic SCC. These results imply that a 24% increase in the

marginal value of a tCO2 stored in the rainforest should be applied in local cost-benefit analysis.

Keywords : dynamic stochastic climate-economy model, robust environmental policy, Amazon rain-

forest, climate tipping elements, scientific uncertainty, risk.
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Introduction

The Earth and human societies are complex systems with non-linear stochastic dynamics, en-

tangled through time and space. Our knowledge of the climate system and the interactions of its

components has made significant progress, even if it remains subject to scientific debate. Mean-

while, economic models usually rely on a stylized representation of climate change where feedbacks

between global climate change and subsystems such as tropical rainforests are either omitted, de-

terministic or modeled as a generic catastrophe with no geophysical representation, even in reduced

form. Yet, impacts of climate change on these subsystems are stochastic: for instance, the law that

describes how more frequent occurence of droughts under changing climate might affect tree losses in

the Amazon rainforest is not deterministic (Anderson et al., 2018). Furthermore, the possible collapse

of these subsystems is more complex than a probability defined ex ante: because of vegetation-rainfall

feedbacks (Zemp et al., 2017), a decrease in forest cover could for instance yield an abrupt partial

dieback that is not a linear function of an additional CO2 emission or an additional hectare of de-

forestation. In this paper, we analyze and quantify how moving beyond these simplifications yields

fruitful insights for decision-making regarding adaptation and mitigation under a changing climate

endogenous to our economic activities.

We focus on climate subsystems that have three properties. First, global climate change has an

impact on their dynamics, e.g. through changes in the drought regime under a changing climate

for the Amazon rainforest. Second, our subsystems have an impact on global climate change: in-

deed, rainforests can for instance store and release carbon. Both impacts can be positive or negative.

Third, subsystem’s dynamics cannot be simply deduced from climate change, because of inertia,

self-sustaining dynamics or feedback effects: for instance, the Amazon rainforest recycles part of its

precipitation to feed its own growth through evapotranspiration. Examples of Earth subsystems are

for instance climate tipping elements (Armstrong McKay et al., 2022). Examples of Earth subsystems

of relevance to this study also include other subsystems that do not have tipping behavior, such as the

South-Eastern Asian rainforest and its feedback on the global carbon cycle or El Niño La Niña and

its impact on intra- and inter-annual natural climate variability.

We build a dynamic climate-economy model, extending a well-established literature studying op-

timal policy under climate risks (Golosov et al., 2014; Cai and Lontzek, 2019; Folini et al., 2024).

In comparison with previous work, we explicitely include a stylized climate subsystem with its own
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dynamics as a state variable of our program, e.g. the current forest cover of the Amazon, and model

its stochastic interactions with climate change. Introducing a stylized subsystem has important impli-

cations both for optimal climate policy and regional subsystem management.

First, a key question for optimal climate policy is to know if and to what extent subsystem’s

idiosyncratic risk affects aggregate climate risk bearing over intertemporal welfare. Indeed, the feed-

backs brought by these subsystems on global climate might not have the same social value for differ-

ent states of the world where they might occur, which depend on their own dynamics, its interaction

with climate change with possible thresholds and the timescales over which transitions to different

states occur for the subsystem. Furthermore, while some subsystems are expected to decrease global

and regional temperatures if global temperature increases, e.g. southern boreal forest dieback or

Labrador-Irminger seas/Subpolar Gyre oceanic convection collapse, some others are expected to in-

crease temperatures under warming climate, e.g. abrupt permafrost thawing or Arctic winter sea ice

collapse (Armstrong McKay et al., 2022): the subsystems have different insurance value with respect

to intertemporal utility. Without loss of generality, we analytically derive the channels through which

our subsystem changes optimal policy using value function decomposition. As in the climate eco-

nomics literature inspired from asset pricing (Dietz et al., 2018; Lemoine, 2021; Van den Bremer and

Van der Ploeg, 2021), we depict how the social cost of carbon (SCC) is affected by different compo-

nents when accounting for climate risks, thinking of the subsystem as a climate asset that can increase

or decrease aggregate risk of the wider climate portfolio.

We show that an Earth subsystem affects climate policy through three channels. First, it scales

multiplicatively the standard certainty equivalent and precautionary channels driving SCC depending

on how and how much its feedback affects global climate change. Second, a marginal change in

the subsystem’s state brought by a marginal emission today yields an additive change in optimal

policy because of the marginal impact of this change in the future dynamics of the subsystem on the

continuation value. Third, an insurance channel, i.e. a ‘subsystem beta’, increases the SCC if the

subsystem has a larger feedback effect on global climate change in the states of the world where a

marginal emission has the largest impact on intertemporal welfare.

Second, an important question for optimal subsystem management is to analyse and quantify how

a marginal variation in the state of the subsystem affects intertemporal welfare. Indeed, a marginal

change in the subsystem’s state has a first-order impact on optimal policy as it changes global temper-

atures, for instance because of carbon releases from the Amazon rainforest. But a marginal change

in the subsystem’s state also has a second-order impact on optimal policy as it affects the growth of
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the subsystem in all future periods. We introduce the social cost of the dynamic system (SCDS): it

measures in present monetary terms the intertemporal social cost of a marginal decrease in the subsys-

tem’s state today, which captures the extent to which the future subsystem’s ability to self-perpetuate

changes with a marginal change in its current state. The decrease in the subsystem’s ability to self-

perpetuate increases aggregate risk bearing over intertemporal welfare through future feedbacks of

the subsystem on global climate.

We apply our framework to the debated fate of the Amazon rainforest in a stochastic quantitative

model. We focus solely on its value as a carbon stock. This subsystem has a major regulating func-

tion for the Earth. At the global scale, it acts as a carbon sink of ∼ 123 ± 23 GtC biomass (Malhi

et al., 2006). This represents a significant 39% (± 7%) of the remaining budget to keep two chances

out of three of limiting global warming to 2°C according to IPCC (Masson-Delmotte et al., 2021).

The Amazon rainforest is therefore very valuable. But the Amazon rainforest is in danger as a result

of human actions. A combination of forest degradation, deforestation, climate change and feedback

effects may cause a partial dieback of the rainforest (Lovejoy and Nobre, 2019). The direct human

impact, through deforestation and degradation, is attracting a lot of attention among economists (Bal-

boni et al., 2023), and for good reasons. But human activities also affect the rainforest indirectly

through climate change. Anthropogenic climate change is expected to change precipitation patterns,

especially make extreme droughts which generate tree mortality and carbon losses (Phillips et al.,

2009; Yao et al., 2022) more frequent. A ton of carbon emitted in Europe or Asia thus has an impact

on the rainforest. In turn, the forest increases the damage of future climate change in Europe and

Asia, as it might release carbon under changing climate. In particular, the rainforest feedback might

be the largest in states of the world where cumulative emissions have the largest impact on aggregate

welfare, thus increasing aggregate risk bearing over intertemporal welfare. Finally, vegetation-rainfall

feedback effects limiting the recycling of water by the forest, i.e. forest’s own dynamics, may magnify

these human-induced perturbations (Zemp et al., 2017). This self-sustained dynamics arising from

temporal autocorrelation, in which decisions in some part of the forest affect other parts because of

spatial autocorrelation, is usually neglected in local cost-benefit analysis or in dynamic discrete choice

approaches (Souza-Rodrigues, 2019; Araujo et al., 2020; Hsiao, 2021). Finally, the fate of the Ama-

zon rainforest is not only risky, it is also uncertain. Aside from standard risk scenarios, where future

state probabilities are known, uncertain situations are situations in which there is no unanimous prob-

ability assignment due to insufficient information or competing datasets, models, or expert opinions.
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Indeed, projections of rainfall patterns under climate change differ depending on the climate model

used (Kent et al., 2015). Furthermore, there are debates about whether feedback effects might yield

a tipping point in the Amazon rainforest (Flores et al., 2024). We calibrate the perturbations to the

dynamics of the rainforest with three components: exogenous deforestation and degradation scenarii

(Aguiar et al., 2016; Matricardi et al., 2020), bias-corrected downscaled output on monthly precipi-

tation from hydrological model MATSIRO for four ISIMIP earth system models (IPSL-CM5A-LR,

HadGEM2-ES, GFDL-ESM2M, MIROC5) forced with future emissions from three different Shared

Socioeconomic Pathways (SSPs) and historical observations of the impact of droughts on tree losses

(Phillips et al., 2009; Yao et al., 2022). Given these calibrations, we jointly calibrate the remaining

parameters of the Lotka-Volterra equation describing tipping behavior of tropical forests in Ritchie

et al. (2021) to match the central estimate of the core expert probability assessment of Kriegler et al.

(2009). Finally, we use both discounted expected utility and a more flexible smooth ambiguity cri-

terion (Berger et al., 2017; Barnett et al., 2020) as a sensitivity check to measure how our collective

attitudes towards risks and scientific uncertainties might affect optimal policy estimates.

Our approach yields two key methodological insights for the Amazon rainforest. First, the social

cost of carbon (SCC) should include the impact that a marginal increase in cumulative emissions at

the global scale has on the dynamics of the rainforest. This includes a scaling of current policy by

the carbon releases from the Amazon rainforest under changing climate, an additive risk premium in

the SCC from the perturbation on the present and future dynamics of the rainforest and an insurance

channel, the positive ‘amazon beta’, because the carbon releases occur in states of the world where

carbon emissions have the largest marginal impact on intertemporal welfare. Second, the social value

of the Amazon rainforest as a carbon stock cannot be reduced to the amount of carbon it contains:

the social cost of the dynamic system (SCDS) matters too, i.e. the cost of a marginal decrease in

subsystem’s state because of its reduced ability to self-perpetuate.

These methodological results yield two key policy insights. First, decision-makers should aug-

ment the social cost of carbon (SCC) from the impact of a marginal emission on the Amazon rain-

forest, that further releases carbon. Emitters around the world should pay for the welfare impact

of their emissions: the wedge between standard SCC and SCC with endogenous amazon feedback

could be leveraged to finance payment for ecosystem services for the preservation of the rainforest.

In our benchmark specification, we show that this wedge represents 15% of the standard SCC under

aggregate climate risk. Second, the social value given to a hectare of rainforest should not be only the

standard social cost of carbon SCC, but the sum of the amazon-augmented social cost of carbon and
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the social cost of the dynamic system SCDS. Indeed, a marginal decrease in the forest cover has a

first-order welfare impact, as it releases carbon, but also a second-order impact on the future dynam-

ics of the subsystem as a whole. Under our benchmark specification, SCDS represents 16% of the

standard stochastic SCC. Our theoretical work can therefore be operationalized in local cost-benefit

analysis of deforestation and be used in complement to the significant progress in the quantification

of carbon stored at the finest scale via satellite observation. Indeed, we show that the valuation of one

tCO2 of carbon stored in the forest should be increased by 24% in local cost-benefit analysis to reflect

the true risk premium on intertemporal utility that this marginal change in its state and correspond-

ing carbon releases represent. This scaling factor corresponds to the sum of the increase in the SCC

due to the endogenous modelling of the rainforest dynamics and its interaction with global climate

risk, and the share of the SCDS that corresponds to the marginal impact on intertemporal utility of

a marginal change in subsystem’s state. We believe that our framework could be extended to other

climate subsystems to inform policy decisions at the global and regional scales.

To our knowledge, we provide the first analytical study of the stochastic interactions between the

macroeconomy, climate change and a climate subsystem and the first quantitative study of the Ama-

zon rainforest in a global perspective in a dynamic stochastic climate-economy model with an explicit

geophysical representation of its uncertain dynamics. We contribute to different strands of literature.

First, we bridge the gap between a literature using stochastic climate-economy models with stylized

climate risks, e.g. Cai and Lontzek (2019), and a literature using deterministic models with explicit

geophysical dynamics, e.g. Nordhaus (2019); Dietz et al. (2021). Thus, we contribute, along with

others e.g. Dietz et al. (2021), to a better understanding of the impact of climate dynamics on eco-

nomic decisions. Second, we bring together complex numerical stochastic climate-economy models

with analytical decompositions that allow to identify the precise channels through which climate risks

affect optimal policy (Lemoine, 2021). In comparison with a prolific literature using more stylized

approach where the tipping risk is a probability to switch from one qualitative state to another one

(Lemoine and Traeger, 2014; Fillon et al., 2023), we have a more complex dynamics as the subsystem

is a state in our dynamic program. Our decomposition also relates to the debates on the ‘climate beta’

(Dietz et al., 2018) and on how climate mitigation affects aggregate risk bearing on intertemporal wel-

fare. Third, we contribute to the literature on the modeling of complex non-linear socio-ecological

systems (Levin et al., 2013). Indeed, we model the catastrophic outcome as an emerging property

of the dynamic system with an explicit reduced-form geophysical representation, in line with bifur-
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cation theory (Ritchie et al., 2021). We depart from perturbation approaches considering small risks

(Van den Bremer and Van der Ploeg, 2021), ad hoc probability assignments (Cai and Lontzek, 2019)

or macroeconomics literature on disasters considering reversible extreme events that occur as one-off

catastrophes along a smoothly evolving climate regime with fluctuations, traditionally modeled with

Poisson and Wiener processes (Hong et al., 2023). Indeed, our framework allows a possible abrupt

dieback of the rainforest, which raises numerical challenges: following insights from Cai (2019),

we use simplicial Chebyshev polynomials and break one level of ‘curse-of-dimensionality’ related

to approximation nodes with parallel CPU computing. Fourth, we contribute to the literature on the

Amazon rainforest: in comparison with most approaches focusing on deforestation (Balboni et al.,

2023), we consider the impact of climate change on the rainforest and model the dynamics of the

subsystem as a whole. We take a welfarist approach at the global scale to provide estimates of the

marginal value of an hectare of rainforest taking into account the impact that a marginal change has

on all other parts of the forest. Finally, we contribute to the literature on robust social choice cri-

teria for social decision-making under climate risks and uncertainties (Berger et al., 2017; Barnett

et al., 2020, 2022). Beyond stochastic risk in climate and economic models, i.e. the distribution of

a stochastic variable of interest within a given model, there are large scientific controversies between

models, for instance on climate tipping points, their mechanisms, thresholds, timescales, for which

authors provide confidence assessments (Armstrong McKay et al., 2022). The disagreements on

the right modelling approaches to climate tipping elements yield debates on their possible economic

consequences (Keen et al., 2022). These scientific disagreements and heterogeneous confidence in

assessments on climate dynamics should be taken into account when making social choice, at least

as a robustness check on our best policy estimates. Alongside a more in-depth modeling of climate

risks, a key issue for public and scientific debate is indeed to provide greater flexibility in the attitudes

towards these risks. Our approach allows for a clear distinction, using a two-step approach, between

the purpose of the risk and our attitudes towards it.

In the first analytical part (section 1), we study through value function decomposition how our

modelling approach of climate subsystems affects both global climate policy and regional subsystem’s

management. In the second numerical part (section 2), we apply this general framework and calibrate

a dynamic stochastic climate-economy model with an explicit modelling of the Amazon rainforest.
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1 Modeling approach

We build a dynamic climate-economy model, extending a common framework used in the eco-

nomics literature to study optimal climate policy (Cai and Lontzek, 2019; Dietz et al., 2021). We

augment the model with a stylized representation of a subsystem of the Earth system whose uncertain

dynamics interacts with global climate change. We study optimal policy under two distinct social

choice criteria. The first criterion is the expected utility criterion: the social planner chooses between

prospects by comparing their expected utilities. The second criterion (Klibanoff et al., 2005; Hayashi

and Miao, 2011) allows to disentangle preference over time, over states of the world and over scien-

tific models of the world. We highlight analytically how the subsystem might affect optimal global

climate policy and suggest a measure for optimal regional management of this subsystem.

1.1 A dynamic climate-economy model

Our model has three ingredients: the macroeconomy, climate change, and an earth subsystem.

This study focuses on their dynamic interactions. The three corresponding variables are net output Y,

global surface temperature T, and the current state of the dynamic subsystem relative to its initial state

A. The individual dynamics of these systems might be stochastic, for example due to other economic

risks such as uncertain future technological change, but we focus on stochasticity in the interactions

between these dynamic systems. We do not model the interactions between the macroeconomy and

the subsystem: we focus on the additional feedback the subsystem brings on global climate change.

Other impacts are for instance regional health effects or loss of use and non-use values from the

subsystem, but we focus on the first-order market impacts on global welfare through global climate

change. Furthermore, while some subsystems have an impact via other channels, for instance rainfall

changes under Atlantic Meridional Overturning Circulation (AMOC) collapse, our climate variable

is global annual mean temperature. Alternative climate indicators could be used depending on the

specific risk of each subsystem while keeping the same framework. Our framework also makes it

possible to consider extensions, for example if several subsystems interact (Cai et al., 2016). Finally,

we do not model impacts of the subsystems on regional temperature separately from global impacts,

because they are of different magnitude but of the same sign. The framework could be extended to

integrate this additional mechanism.

This set of assumptions leaves us with four key interaction channels between the macroeconomy,

aggregate climate change and the stylized earth subsystem. First, climate change affects economic
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output (∂Y/∂T ) through a global damage function. Second, economic output affects global climate

change (∂T/∂Y ) through emissions that can be abated at a given cost and add up to a cumula-

tive emissions stock. Average surface temperature is a linear function of this cumulative emission

stock through transient climate response to cumulative emissions. Third, subsystem’s dynamics af-

fects global climate change (∂T/∂A). Finally, climate change affects the subsystem’s state (∂A/∂T )

through various mechanisms which can be presented in a reduced-form approach with credible geo-

physical dynamics and an explicit calibration. These four channels are four components through

which stochastic risk affects optimal policy. The two first channels, i.e. damage uncertainty and

uncertainty in the transient climate response to cumulative emissions, are already well studied in the

climate-economics literature and not specific to the study of subsystems. Instead, the question of the

interaction of aggregate climate risk on intertemporal welfare with idiosyncratic subsystem risk is

of interest to us. The two last channels, especially the fourth and most important one which deter-

mines whether or not there will be feedbacks between global climate change and the subsystem, are

usually modeled (Nordhaus, 2019; Dietz et al., 2021) as deterministic or with ad hoc probabilities.

Furthermore, the dynamics of the subsystem itself is in general not represented, even though there are

important debates and scientific uncertainty about its shape that matter for optimal social choice. We

model a dynamic subsystem whose dynamics is risky, uncertain, self-sustaining (e.g. a decrease in

the subsystem’s state reduces its ability to self-perpetuate) and interacts with global climate risk. We

focus on two sources of stochastic risk and their interaction: standard aggregate risk on the transient

response of global temperature to cumulative emissions (∂T/∂Y ) and idiosyncratic subsystem risk

on the impact of global climate change on the subsystem (∂A/∂T ).

Consider a system A whose dynamics is a function of its state and of climate change. Let us

assume that ϵ summarizes the impact of climate on the subsystem through temperature. We have

that: dA/dt = f(ϵ(T ), A). Examples of such stylized dynamics for slow-onset (AMOC collapse)

or fast-onset (forest dieback) tipping elements are given in Ritchie et al. (2021). Let us assume

that this subsystem’s dynamics has an impact on welfare: it can affect global climate change and

economic damages. But the system has a risky dynamics, as climate impacts on the system are

stochastic: dA/dt = f(ϵ̃(T ), A). Furthermore, there are scientific uncertainties, for instance on

the transition law f of the dynamic system or on the distribution of stochastic ϵ̃(T ) linking climate

change to changes in A. Different models i and different models j give different transition func-

tions and different distributions respectively, so that: dAij/dt = fi(ϵ̃j(T ), Aij). To make optimal

decisions, the planner takes into account the entire stochastic distribution of each ϵj within each pos-
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sible function fi and weights over the alternative models with a given aggregation rule g, so that:

dA/dt = g[dAij/dt] = g [fi(ϵ̃j(T ), Aij)]. There are m alternative models, i.e. m alternative combi-

nations of i and j.

1.2 Social choice criteria

Social planner maximizes intertemporal welfare under endogenous climate damages and subsys-

tem’s dynamics. The state space is S. The state variables are x = (A, T, Y ). Γ(x) is the control set.

Control is µ, the abatement rate. Following Golosov et al. (2014), we assume a fixed savings rate.

At time t, decision maker’s information consists of history ωt = {ω0, ω1, ..., ωt} with ω0 given. The

uncertainty is described by the random m in the set M: a discrete indicator of alternative models for

the subsystem. The decision maker has a prior χ0 over m. Each m gives a probability distribution

πm over the state space. The posterior χt and conditional likelihood πm,t are obtained by Bayes’ rule.

Discounted expected utility Under expected utility, the reduction of compound lotteries axiom

states that χt and πm,t can be reduced to a single distribution, i.e. the social planner is uncertainty

neutral. The social planner’s welfare at time t writes recursively:

Ut(xt, ϵt) = max
yt

[
u(xt, yt) + δEχt,πm,t(Ũt+1(xt+1, ϵ̃t+1))

]
(1)

s.t xt+1 = G(xt, yt+1) and µt ∈ Γ(xt) (2)

with G the transfer function, Ũt+1 the random continuation value, ϵ̃ the stochastic component, δ

the discount factor and u the instantaneous utility, assumed to be of the constant-relative risk aversion

form with η the elasticity of marginal utility: u(x) = x1−η

1−η .

This expected utility approach has two drawbacks. On the one hand, preference over time and

states of the world are entangled in η. On the other hand, the social planner is uncertainty neutral: that

may not be the most natural approach to decision-making under uncertainty (Ellsberg, 1961). Recent

empirical evidences suggest that policy-makers are uncertainty-averse (Berger and Bosetti, 2020). For

robustness, we test how much our estimates for optimal global climate policy and optimal regional

subsystem management derived under expected utility depend on our collective attitude towards risk

and uncertainty. Thus, our second recursive criterion is a specific form of smooth ambiguity criterion

that allows to introduce uncertainty aversion from the social planner and to disentangle intertemporal

elasticity of substitution and relative risk aversion. Among other social choice criteria used to study
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risk and uncertainty, we use a form of recursive smooth ambiguity model for three reasons. First,

these preferences are an extension of the expected utility model which makes the comparison with

this framework more readable: as in this model, the flaw is that we have to define subjective probabil-

ities for the different models. We assume that each model has an equal probability of being the ‘right’

one. The second reason is that this criterion allows a separation between the object (risk and uncer-

tainty) from our attitude towards it (risk and uncertainty aversions). Thus, comparative statics with

varying (risk) uncertainty aversion and constant (risk) uncertainty levels can be undertaken, whereas

it is entangled in the penalty parameter in robust control (Hansen and Sargent, 2001). It is useful as

our setting includes both risk and uncertainty. The third reason is that, in comparison with robust

control, this model does not assume that the decision-maker has an approximate model and that the

‘real’ model is near this approximation.

Smooth-ambiguity With this criterion, χt and πm,t cannot be reduced to a single distribution

(Hayashi and Miao, 2011; Berger et al., 2017). This is the case here when the concave transformation

h◦v−1 introduced below is non-linear, yielding uncertainty aversion. Social planner’s welfare at time

t writes:

Vt(xt, ϵt) =W (ut, u(Rt(Ṽt+1(xt+1, ϵ̃t+1)))) (3)

W (u, y) = u−1[(1− δ)u+ δy] (4)

Rt(Vt+1(xt+1, ϵt+1)) = h−1
[
Eχt

(
h ◦ v−1Eπm,t [v(Ṽt+1(xt+1, ϵ̃t+1))]

)]
(5)

under the same constraints. W: R2 → R is a time aggregator and R is an uncertainty aggregator

that maps an ωt+1-measurable random variable ϵ̃t+1 to an ωt-measurable random variable. Eχt is the

expectation operator taken at time t over models, and Eπm,t is the expectation operator taken at time

t over future welfare, conditional on the model m. The three functions u, v and w are isoelastic, with

θ, γ and µ the inverse of the elasticity of intertemporal substitution, the relative risk aversion and

the relative uncertainty aversion. The two expectations highlight the two-step bayesian approach. In

the first stage, the social planner evaluates the expected reward of a policy under each risky model

and express it in monetary terms through a certainty equivalent that depends on her attitude towards

risk. In the second stage, the policy maker evaluates an overall expected reward across the various

certainty equivalents depending on her attitude towards uncertainty. The policy maker adresses risk

within models, then uncertainty over models.
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1.3 Analytical definitions

1.3.1 Global scale - optimal climate policy (SCC & SCCDS)

In the remainder of this work, SCC (SCCSA) is the social cost of carbon under expected utility

(smooth ambiguity), SCCDS (SCC) is the social cost of carbon when the dynamic subsystem is

(not) included in the model. Without loss of generality, consider the optimal SCC and SCCDS for

a policymaker under expected utility. For exposition, we focus on expected utility to highlight the

various channels through which the subsystem affects optimal policy: same elements are derived

under smooth ambiguity in annex. We simplify the notation for the expectation taken over stochastic

risk and over models, reduced by compound lotteries under expected utility. The shadow cost of

emissions is the negative partial derivative of the right-hand side of equation (1) with respect to time

t emissions, St. It is brought from intertemporal utility to present monetary terms when scaled by

the marginal utility of consumption u′c(ct) and a discount factor δ. We assume no decay, so that
∂St+1

∂St
= ∂Tt+1

∂Tt
= 1. In our setting, we have stochastic aggregate risk over transient response to

cumulative emissions, ∂T/∂S, and idiosyncratic risk over the subsystem’s dynamics, ∂A/∂T . We

assume that the impact of the subsystem on global temperatures goes through carbon releases rather

than other mechanisms as in our quantitative application. SCC and SCCDS write:

SCCt =
δ

u′c(ct)
Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
(6)



SCCDSt =
δ

u′
c(ct)

Et

[
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

(
1 +

∂St+1

∂At+1

∂At+1

∂St

)]
︸ ︷︷ ︸

V1,t : temperature channel

+ Et

[
∂Ut+1

∂At+1

∂At+1

∂St

]
︸ ︷︷ ︸
V2,t : subsystem channel



V1,t = Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
︸ ︷︷ ︸

V a
1,t : standard

Et

(
1 +

∂St+1

∂At+1

∂At+1

∂St

)
︸ ︷︷ ︸

V b
1,t : subsystem scaling

+ cov

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1
; 1 +

∂St+1

∂At+1

∂At+1

∂St

)
︸ ︷︷ ︸

V c
1,t : insurance

(7)

Modeling an endogenous subsystem in a global climate-economy model and its interaction with

climate change implies a risk premium that can be decomposed in two immediate channels: a sub-

system channel and a temperature channel. First, marginal changes in the subsystem’s state, affected

by current marginal carbon emissions, have an impact on the continuation value: it is the subsystem

channel. Second, a marginal increase in carbon emissions affect next period temperatures and fu-

ture welfare, both through the global carbon cycle and with the additional feedback on temperature
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from the subsystem: it is the temperature channel. The temperature channel has three components:

a change in the continuation value of the standard channel driving optimal policy, a scaling factor of

this same standard channel and an insurance component, the ‘subsystem beta’.

The standard channel driving optimal climate policy, ∂Ut+1

∂Tt+1

∂Tt+1

∂St+1
, is modified when we account

for the subsystem’s dynamics. In particular, ∂Ut+1/∂Tt+1 can be decomposed in two components

through a second-order taylor expansion depicted in annex: the certainty equivalent (CE) and the

precautionary channel (PC), following Lemoine and Rudik (2017) and Lemoine (2021). Most of the

future impacts on intertemporal welfare of a marginal carbon emission are included in the continua-

tion value Ut+1. We decompose these impacts further for all future periods. Detailed in annex, the

decomposition yields an expression for SCC and SCCDS:

SCCt =
δ

u′c(ct)

Complete standard︷ ︸︸ ︷
∞∑
i=t

δi−t Et

[
u′S(ci+1)

]
(8)

SCCDSt =
δ

u′c(ct)


Complete standard channel scaled︷ ︸︸ ︷
∞∑
i=t

δi−t Ei

(
u′S(ci+1)

)
Πi

l=tV
b
1,l +

Complete insurance channel︷ ︸︸ ︷
V c
1,t +

∞∑
j=t

δj−t+1 V c
1,j+1 Π

j
m=tV

b
1,m+

Complete subsystem channel︷ ︸︸ ︷
V2,t +

∞∑
k=t

δk−t+1 V2,k+1 Π
k
n=tV

b
1,n


(9)

Modeling an endogenous subsystem in a global climate-economy model and its interaction with

climate change implies a risk premium that can be decomposed in three complete channels, account-

ing for present and future impacts. The first term of equation (9) is the sum of all future marginal

impact of an increase in the carbon stock on instantaneous utility. The second term is the complete

insurance channel. The last term is the subsystem channel at all future periods. I describe the three

scaled channels in detail below. The three channels driving optimal policy are scaled by all present

and future V b
1,i when the subsystem’s dynamics is explicitely accounted for. V b

1,i measures the sign

and magnitude of the additional present and future feedbacks the subsystem brings to climate change.

It increases (decreases) the SCCDS if (∂Si+1/∂Ai+1).(∂Ai+1/∂Si) is positive (negative), i.e. if the

subsystem releases (absorbs) carbon when carbon concentration increases.

Complete standard channel scaled The first term in the bracket in equation (9) is the com-

plete standard channel scaled. Introducing a climate subsystem in a dynamic climate-economy model

scales the standard channel driving optimal climate policy by the present and future expected feed-

backs this subsystem brings on climate change, and thus on intertemporal welfare through climate

damages. The standard channel driving optimal climate policy is the sum on all present and future

13



period of the marginal derivative of instantaneous utility with respect to a marginal increase in carbon

concentration.

Complete insurance channel The second term in the the bracket in equation (9) is the complete

insurance channel. This insurance channel measures how the additional feedback on climate change

brought by the impact of climate change on the subsystem’s dynamics covaries with the marginal

impact of carbon emissions from economic activity on intertemporal welfare at all present and future

period. This term V c
1 is familiar from the consumption-based capital asset pricing approach (Lucas Jr,

1978) and the climate-economics literature (e.g. Dietz et al. (2018), Lemoine (2021), Van den Bremer

and Van der Ploeg (2021)): agents require a greater expected return on assets which increase aggre-

gate risk bearing on future consumption1. The left-hand side of this channel is the marginal effect

of a change in cumulative emissions on intertemporal welfare: it is negative. The right-hand side of

the covariance can be either positive if the marginal impact of a change in carbon concentration2 on

subsystem’s state has the same sign as the marginal impact of a change in subsystem’s state on car-

bon concentration, or negative if they have opposite signs. All these states of the world are possible

within the same model and for the same dynamic subsystem. In the first case, the feedback of the

subsystem on climate change is positive: a marginal increase in carbon concentration brings an even

larger temperature change because of the change in subsystem’s dynamics. The causal mechanism

stems either from a growth effect (an increase in carbon concentration increases the subsystem’s state

which increases the temperature) or a degrowth effect (an increase in carbon concentration decreases

the subsystem’s state which decreases temperature). Examples of subsystem that have these cycli-

cal properties are for instance cryosphere climate tipping elements (Armstrong McKay et al., 2022),

such as the boreal permafrost, and the Greenland, West and East Antarctic ice sheets. In the second

case, the feedback of the subsystem on climate change is negative: the effect of a marginal increase

in temperature on temperature is mitigated by the decrease in temperature from the subsystem. Two

causal mechanisms are possible: either a growth effect (an increase in carbon concentration increases

1A parallel beta could be computed for scientific uncertainty, measuring how scientific uncertainty about

this subsystem’s dynamics and its interaction with climate change affects aggregate scientific uncertainty about

climate change. A positive beta-risk, i.e. when the subsystem increases aggregate risk, should be decreased

(increased) if the subsystem’s uncertainty decreases (increases) aggregate scientific uncertainty, i.e. depending

on subsystem beta-uncertainty (Izhakian, 2020).
2In our analytical decomposition, we focus on temperature impacts through the carbon cycle, but the demon-

stration would apply to other mechanisms.
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the state of the subsystem which decreases the temperature) or a degrowth effect (an increase in

temperature decreases the subsystem which increases the temperature). Examples of subsystem that

have these countercyclical properties are for instance ocean-atmosphere climate tipping elements,

such as Labrador-Irminger Seas, Subpolar Gyre (SPG) oceanic Convection and Altantic Meridional

Overturning Circulation (AMOC). If the feedback brought by the subsystem covariates positively

(negatively) with the impact of emissions on intertemporal welfare, then optimal policy is relatively

more (less) stringent when this ‘subsystem beta’ is accounted for. The magnitude of the covariance

depends on relative variations: for a positive covariance, if the states of the world where the marginal

effect of an additional emission on welfare is relatively greater (smaller) are also the states of the

world where the right-hand side of the covariance is relatively greater (smaller), i.e. situation where

the feedback of the subsystem on climate change is relatively more positive (more negative), then the

insurance channel increases the social cost of carbon SCCDS more (less). This depends on subsystem

dynamics, global climate damage, global temperatures, etc.

Complete subsystem channel The third term in the the bracket in equation (9) is the complete

subsystem channel, i.e. the sum of all present and future immediate subsystem channels V2,t scaled

by the feedback of the climate subsystem on global climate change. The complete subsystem chan-

nel measures how a marginal change in the subsystem’s state due to a marginal carbon emission

affects intertemporal welfare. A contemporary increase in carbon concentration and in temperature

has a stochastic impact on the subsystem. This impact can be sometimes positive, for instance if

an increase in carbon concentration increases vegetation growth rates for rainforests because of fer-

tilization effects. But the impact of a marginal emission is mostly negative, as increases in carbon

concentration disrupts most climate subsystems (Armstrong McKay et al., 2022), such as the Barents

Sea Ice. This impact can also be alternatively positive or negative for a given subsystem depending

on its own dynamics or the current state of the climate system. A same marginal increase in carbon

concentration does not have the same impact along a given concentration pathway. For instance, a

marginal increase in carbon concentration at low concentration levels might increase the vegetation

growth rate for the Amazon rainforest through fertilization effects, while an increase in carbon con-

centration at high concentration levels might put the rainforest in great danger through changes in

El Niño, a collapse in the Atlantic meridional overturning circulation or temperature limits for the

photosynthesis (Doughty et al., 2023). A same marginal increase in carbon concentration does not

have the same impact depending on the state of the subsystem. For instance, while the Amazon
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rainforest might be resilient when not too disturbed, because of plant trait diversity (Sakschewski

et al., 2016) or evapotranspiration by which the rainforest recycles the rainfall that will feed its future

growth, these characteristics that enhance resilience of the subsystem might weaken when the sub-

system’s state decreases in extent. All these characteristics of the impacts a climate subsystem might

have on intertemporal welfare are disregarded when the subsystem is not explicitely a state variable of

our program and its collapse represented as an ad hoc probability depending on carbon concentration.

Including a subsystem in a global climate-economy model and its interaction with global climate

change implies a risk premium that can be decomposed in three components: a scaling of standard

optimal policy measure, an insurance component, and a subsystem component. Each of these chan-

nels is scaled by the additional feedback the subsystem brings on global climate change in all present

and future periods.

1.3.2 Regional scale - optimal subsystem’s management (SCDS)

The social cost of the dynamic subsystem, SCDS, is the marginal impact on intertemporal welfare

of a marginal change in subsystem’s state, brought into present monetary terms. In other words, a

marginal change in the current state of the subsystem has an impact on the future dynamics of the

subsystem, which matters because this future dynamics has an impact on future climate damages.

The subsystem has its own dynamics, which is not completely controlled by the policy-maker. Our

representation of the dynamics of the subsystem allows to highlight and compute the SCDS. Without

loss of generality, we derive the SCDS under expected utility. The same formula is given in annex for

smooth ambiguity.

Starting from the optimal policy program, we seek for the derivative of our continuation value

with respect to the subsystem’s state. In comparison with SCCDS, we focus on the marginal deriva-

tive of the next-period continuation value with respect to next-period subsystem’s state. Indeed, the

subsystem might have short-term oscillatory behavior: thus, ∂At+1/∂At might have unstable vary-

ing signs. Under moderate conditions, for instance along the optimal path, reducing the subsystem’s

stock could increase its short-term growth by for instance reducing competition between patches of

a forest, while still reducing its aggregate long-term survival that is of interest to public policy. A

short-term oscillation ∂At+1/∂At < 0 might thus bias the sign of the SCDS while we are interested

in the long-term behavior of our system, i.e. its marginal impact on aggregate intertemporal welfare.

L is the initial value of the carbon stored in the subsystem in our application ; this rescaling allows
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to translate marginal changes in the subsystem’s state to a standard carbon unit. The SCDS has two

different components:

SCDSt =
1

L
δ

u′c(ct)

Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

∂St+1

∂At+1

)
︸ ︷︷ ︸

W1,t : temperature channel

+ Et

(
∂Ut+1

∂At+1

)
︸ ︷︷ ︸

W2,t : subsystem channel

 (10)

The temperature channel measures the feedback of the subsystem on aggregate climate change,

i.e. how much a marginal change in the subsystem’s state affects intertemporal welfare through its

marginal impact on temperatures. The subsystem channel measures how a marginal change in the

subsystem’s state affects intertemporal welfare: it includes all future risk on the dynamics of the sub-

system brought by a marginal perturbation in its current state, and thus all future potential increases

in aggregate temperatures and climate damages, including the most disastrous.

We have highlighted the channels through which our modelling approach affects global climate

policy and regional subsystem management. For illustration, we apply our framework to the debated

fate of the Amazon rainforest. We quantify the impact of this specific subsystem on optimal climate

policy in a dynamic stochastic climate-economy model. We measure the impact of the interactions be-

tween aggregate climate risk and amazon idiosyncratic risk and its explicit geophysical dynamics on

optimal rainforest management. We compute the share of each of the channels depicted analytically.

2 A quantitative application: the Amazon rainforest

We use a macroeconomic growth model à la Ramsey and add climate dynamics (Guivarch and

Pottier, 2018; Taconet et al., 2021; Fillon et al., 2023). We augment the model with a stylized rep-

resentation of the Amazon rainforest whose uncertain dynamics interacts with climate change. We

focus on two sources of stochasticity3 that are of particular interest: standard aggregate climate risk

regarding transient climate response to cumulative emissions on the one hand, i.e. how much emis-

sions from economic activity translates to climate change, idiosyncratic stochastic impact of global

climate change on forest dynamics on the other hand, i.e. how much climate change affects the carbon

stored in the rainforest. In other words, we price the Amazon rainforest climate asset within a broader

3More stochasticity and states would be difficult to handle with global solution methods without message

passing interface on large computing clusters and would not provide more information on the mechanisms we

want to highlight.
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risky climate portfolio. In addition to this stochasticity, we add an explicit geophysical representation

of forest dynamics. The dynamics of the rainforest is self-sustaining, with possible feedback effects:

a decrease in the forest cover decreases forest growth. This non-linear dynamics can generate some

curvature in our value function in one dimension of our program. We include scientific uncertainty

over both the functional form of this dynamics and on the impact of climate change on the rainfor-

est, i.e. alternative scientific models embedded in our social choice. We identify key mechanisms

and channels through which risks and uncertainties about the impact of global climate change on the

rainforest affect optimal climate policy at the global scale and optimal rainforest management at the

regional scale. We solve our recursive programs using dynamic programming: we interpolate recur-

sively starting from the last period terminal value function and approximate our value functions with

simplicial Chebyshev polynomials and adaptive approximation domains for our state variables (Cai,

2019). We employ simplicial Chebyshev polynomials, as they enable varying degrees of approxima-

tion across different dimensions of our dynamic problem: less precision is required for approximating

the smooth dynamics of capital accumulation compared to the more complex dynamics of the Ama-

zon rainforest. We break one level of ‘curse-of-dimensionality’ related to approximation nodes with

parallel CPU computing for value function interpolation. Once we have interpolated recursively at

each time step, we simulate 100 stochastic paths for each specification and use the mean path for each

variable of interest.

2.1 Model specification

Economic model One global region produces at each period t a single good using capital K

and exogenous labour L through a production function F (K,L), with exogenous Hicks-neutral tech-

nological change from Nordhaus (2018). Capital dynamics is determined by the per-period capital

depreciation δ and savings rate s: Kt+1 − Kt = −δKt + Ytst. We assume a fixed savings rate

st = αδ, where α is the share of capital in the Cobb-Douglas production function and δ the discount

factor. Gross output Ȳ is affected by a damage factor that increases with global average temperature

T . Net output Y is derived from gross output net of damage: Y = Ω(T )F (K,L). Net output induces

emissions, which can be mitigated at a certain cost: E = σY (1− µ) with µ the abatement rate and σ

the carbon content of production that decreases exogenously over time (Nordhaus, 2018). The emis-

sions adds up to a global cumulative emissions stock S and we assume no decay. The social planner

trades off consumption and mitigation to maximize intertemporal welfare.

18



Climate model We use a simple representation for the climate system, with a linear formula link-

ing global temperature T to the stock of global carbon emissions S through transient climate response

to cumulative carbon emissions ψ, i.e. ∂T/∂S = ψ, as in Dietz and Venmans (2019). Following

Barnett et al. (2020), we assume a truncated normal distribution for ψ on the support [0 : 3.5] with a

best estimate of ψ̄=1.73°C per 1000PgC and a standard deviation of 0.493. Quadratic climate damage

to economic output Ω are derived from this change in average temperature.

Amazon rainforest The variable A used to represent rainforest’s dynamics is the ratio of current

carbon stored in the forest in comparison with the total possible carbon losses L = 75GtC (Arm-

strong McKay et al., 2022). We use a stylized vegetation dynamics (Ritchie et al., 2021), where the

dynamics of A is a function of the current state A and of regional temperature Treg interacted with the

stochastic impact of climate on tree mortality via droughts ϵ̃. Treg is deduced from global cumulative

emissions stock via linear and time-invariant regional transient climate response to global cumulative

emissions (Leduc et al., 2016). There are two possible functional forms for the dynamics of the sys-

tem: either without (f1) or with (f2) a feedback effect. There are four distributions for ϵ̃j because

four different climate models j are used to estimate how more frequent and intense droughts are under

changing climate. This yields a total of eight models: we give each model m the same probability of

being the ‘true’ one. The Lotka Volterra equation writes:

dAij

dt
=

 fi(ϵ̃j .Treg, Aij) with i ∈ {1, 2} , j ∈ [1 : 4] if t ≤ 2200

0 if t > 2200
(11)

with


f1(x) = g0

[
1−

(
Treg(0)+Treg

β0

)2
]
x(1− x)− ϵ̃jTregx− κx

f2(x) = g0

[
1−

(
Υ[1−x]+Treg(0)+Treg)

β0

)2
]
x(1− x)− ϵ̃jTregx− κx

(12)

where g0 is the forest growth rate under normal conditions, κ exogenous deforestation and degradation

rates, Treg(0) regional temperature increase with respect to preindustrial at initial time, Treg regional

temperature increase with respect to initial time, β0 half-width of the growth versus temperature

curve, and Υ the temperature difference between bare soil and forest, driving the feedback. We

assume that regional transient climate response to global cumulative emissions, from which Treg is

deduced, does not depend on A, which should hold for any optimal policy path where the rainforest

is not too depleted.
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2.2 Calibration

We use a standard calibration for the climate and macroeconomic modules: a complete descrip-

tion is given in annex. We use exogenous deforestation and degradation scenarios. Our calibration is

a two-step procedure. We first calibrate the maximum impact of climate on the rainforest via droughts

using climate model projections and historical observations. Then, given these parameters, we jointly

calibrate the remaining parameters internally so that the probability of forest dieback under a tipping

risk (i.e. with functional form f2 that includes a feedback effect in the dynamics) matches the central

estimate of the core expert probability assessment of Kriegler et al. (2009) for each of their tempera-

ture corridors. In particular, we calibrate the shape of the distribution of ϵ̃ between 0 and its estimated

upper bound. We then assume that the parameters and the distribution for ϵ̃ remains constant for the

other specification f1 where there is no tipping risk.

Exogenous deforestation and degradation κ At each period t, a share κt of the current forest

cover is deforested or degraded. We use the mean of three deforestation scenarii (Aguiar et al., 2016).

We assume that deforestation stops after 2050 as this is the maximum horizon for most scenarios. We

multiply the area deforested by two to take into account forest degradation, including human-induced

fires, based on the historical relationship observed between deforestation and degradation (Matricardi

et al., 2020). Scenarii are for the brazilian Amazon which covers 60% of the extent of the rainforest:

we scale the scenario and assume that they hold for the whole rainforest. We convert the deforestation

rate expressed in km2 in a share of initial carbon storage, assuming homogeneity of the carbon stored

over the forest.

External calibration - Endogenous climate change effects ϵ̃j via droughts We model this link

through four ϵ̃j based on the climate model j used to predict the change in rainfall patterns. We

assume that each ϵ̃j follows a Beta distribution on a support whose upper limit ϵ̄j is estimated below.

For the estimation of these upper bounds, we exploit in each climate model the variation in local

climate conditions to measure how much carbon losses from tree mortality in the Amazon increases

with local temperatures. A complete description of our econometric study can be found in the annex.

We build a balanced panel dataset until 2100 along three representative concentration pathways (RCP

2.6, 6.0, 8.5) and use 60 arc-minutes resolution gridded data from the Inter-Sectoral Impact Model

Intercomparison Project (ISIMIP) on monthly precipitation. We use precipitation projections taken
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from the hydrological model MATSIRO for all possible climate forcing models j: IPSL-CM5A-

LR, HadGEM2-ES, GFDL-ESM2M, MIROC5. We compute an index of precipitation stress, the

yearly maximum cumulative water deficit (MCWD) anomaly with respect to an historical baseline

(1985-2004). We match this precipitation data with bias-adjusted and downscaled gridded surface

temperature data specific to each climate forcing model. Data from historical observations (Phillips

et al., 2009; Yao et al., 2022) established a link between MCWD anomaly and carbon losses from tree

mortality in the Amazon rainforest. We scale these yearly carbon losses obtained for each climate

forcing model by the spatial heterogeneity observed in the carbon storage at initial time, taking data

from EarthData (NASA). Our preferred specification is a fixed-effect approach with year and regional

fixed effects and Driscoll and Kraay (1998) standard errors to account for heteroskedascicity and

serial correlation. We control for sub-regional diversity with Silva-Souza and Souza (2020) woody

plant regionalization into 13 subregions. The dependent variable is the yearly carbon loss from tree

mortality (in tC/ha/y) at the cell level for each climate model, and the independent variable is the local

temperature observed over the same period (in °C). We estimate the following equation:

Cj
i,r,t = βjcarbonX

j
i,r,t + αj

i + δjt + ζjr + uji,r,t (13)

with u the pixel-specific error term, i the geo-coded entity (e.g. a pixel of our grid whose resolution

depends on the climate model j used), t the time period, r the Silva-Souza and Souza (2020) subre-

gions. βjcarbon is our coefficient of interest, α a vector of N-1 location-specific fixed effect and the

constant, δ a vector of time fixed effects and ζ our vector of region-specific fixed effects to account

for clusters in our data. We obtain our coefficient of interest β̂jcarbon for four climate models. We

multiply β̂jcarbon by the size of the rainforest, ≈ 700 million ha (Silva-Souza and Souza, 2020), to ob-

tain the yearly loss of carbon per additional degree of local temperature for each model j. We express

this coefficient as a share of the total initial carbon stored that could be released under total dieback

(75 GtC) in the forest and multiply by the number of years per period to obtain the maximum share

of carbon stored in the rainforest that is lost per period because of droughts for a one degree increase

in local temperature for each model j, ϵ̄j ∈ {0.0376, 0.0661, 0.0774, 0.1447}. Our dynamic model

relies on regional temperature that depends linearly on the cumulative global emission stock (Leduc

et al., 2016): we make the assumption that the link between carbon losses and local temperatures

holds for regional temperatures.

Internal calibration Information on how to evaluate the probability of a tipping point for the
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Amazon is scarce. We use expert’s elicitations of a possible Amazon tipping point depending on

temperature corridors expressed in Kriegler et al. (2009). ϵ̃ is the coefficient and its probability dis-

tribution is a mixture of the four ϵj . ϵ̃ follows a Beta law with parameter αs and βs over the support

[0 : ϵ̄] where ϵ̄ is the mean of the maximum ϵ̄j . We jointly calibrate Υ, g0, αs , βs so that the proba-

bility of tipping in our dynamic system, dependent on the distribution of ϵ̃, follows approximately the

imprecise central probability of the expert probability assessments. We have that g0 = 0.49, Υ = 6

and ϵ̃ ∼ B (0.36,0.32) with support [0 : ϵ̄]. For illustration, we simulate the cumulative carbon losses

for all SSP under our model4. A partial or total dieback of the forest occurs by 2200 for a temperature

increase with respect to pre-industrial era above 4°C, which is well above temperature levels obtained

under optimized policy decisions. Thus, while our calibration is approximate and stylized, the dy-

namics of the forest in our estimate is in line with the literature and not artificially more catastrophic

to inflate policy estimates.
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Figure 1: Mean net cumulative carbon losses (in GtC) from the Amazon rainforest along

mean temperature increases with respect to preindustrial era from various extended concen-

tration pathways (SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP5-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0,

SSP5-8.5), from 2000 to 2200, under our calibration.
4In appendix, we plot phase diagrams of the stochastic dynamic system in Figures (8) and (9) for the whole

distribution of ϵ and different temperature pathways over time.
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2.3 Results

We assess numerically the optimal climate policy in a stochastic model with an explicit modelling

of the Amazon’s dynamics under risk and uncertainty. We first measure how much the social cost of

carbon at the global scale is affected by the Amazon rainforest under expected utility. In other words,

we study the gap between SCC and SCCDS. We quantify how the various channels depicted above

shape optimal global climate policy. Second, we quantify the social cost of the dynamic subsystem

SCDS as a share of the standard social cost of carbon SCC under expected utility. Finally, for ro-

bustness, we price the risks and scientific uncertainties in the Amazon dynamics and its interaction

with global climate change and the macroeconomy under smooth ambiguity: we quantify SCCSA

and SCCDSSA under various specifications. In annex, we present intertemporal stochastic paths for

our control variable and for two state variables of interest: global average temperature and amazon

rainforest’s state with respect to its initial state.

2.3.1 Optimal global climate policy - SCC and SCCDS

We first compute SCCDS under expected utility. We compare SCCDS to the standard SCC that

would be obtained under stochastic aggregate climate risk but without an explicit endogenous model-

ing of the Amazon rainforest. On Figure (2), we plot the increase (in %) from SCC to SCCDS for two

specifications. The left bar shows the increase the Amazon rainforest brings to the SCC at the global

scale when there is climate risk on the transient climate response to cumulative emissions but no id-

iosyncratic risk over the rainforest dynamics. The right bar shows the increase from SCC to SCCDS

when we include both idiosyncratic stochastic risk in the dynamics of the rainforest and aggregate

climate risk. For each measure, we compute the share that each of the various channels identified

in the complete analytical decomposition from equation (7) contributes to the increase from SCC to

SCCDS: the scaling of the standard channel through which carbon emissions affect intertemporal

welfare, the insurance ‘amazon beta’ component, and the subsystem channel by which a marginal

change in the amazon’s state affects intertemporal welfare through the continuation value.

Figure (2) yields two main results. First, including the endogenous dynamics of the Amazon

rainforest in a dynamic stochastic climate-economy model increases the SCC. Under aggregate cli-

mate risk over the transient climate response to cumulative emissions, the SCCDS that includes the

dynamics of the Amazon rainforest is around 11% larger than the standard SCC. When additional

idiosyncratic risk on the dynamics of the rainforest is added, i.e. stochastic risk on the impact of
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stochastic drougts from climate change on the rainforest, the SCCDS is around 15% larger than the

SCC. In their meta-analysis based on Cai et al. (2016), Dietz et al. (2021) highlight that the possible

dieback of the Amazon rainforest leads to a 0.1% increase in the expected SCC when considering its

value as a carbon stock. Our analysis suggests these estimates may be significantly understated for

two reasons. First, we account for the rainforest’s dynamics across all possible future states, rather

than focusing on a stylized, catastrophic risk of partial dieback. Second, we incorporate the marginal

impact of the rainforest subsystem on the continuation value—a mechanism described as the sub-

system channel in equation (7). This channel is not explicitly captured in standard climate-economy

models, which often rely on ad hoc probabilities for subsystem dieback without integrating an explicit

state variable to represent the subsystem’s dynamics.

Our second result from the right histogram on Figure (2) shows indeed that the largest share of the

increase from SCC to SCCDS stems from the subsystem channel. Under climate risk, the subsystem

channel represents around 74.3% of this increase, the scaling of the standard SCC by the additional

feedback from carbon releases of the Amazon rainforest represents 25.3%, and the insurance channel

represents 0.4%. Under both aggregate climate risk and idiosyncratic amazon risk, the subsystem

channel accounts for 68%, the standard scaling represents 31.4%, and the insurance channel 0.6%.

In other words, most of the increase between SCC and SCCDS stems from the subsystem channel

under both specifications. The insurance channel, on the other hand, is rather weak, which can be

explained by two factors. First, the risk specification in our model: the insurance relates to the

interaction between the aggregate climate risk (transient climate response to cumulative emissions)

and the idiosyncratic risk (of changing carbon concentration on forest dynamics). In reality, there are

other sources of risk between the two systems, such as the risk on the forest impact on the climate

system, i.e. stochasticity in possible carbon releases that might for instance arise due to heterogeneity

over the rainforest in the carbon storage. This risk could increase the insurance component, i.e. the

subsystem’s contribution to the aggregate risk. Second, we study one subsystem in isolation, whereas

there are several subsystems that interact with each other and could increase the overall aggregate

risk, for example El Niño or AMOC and their feedbacks with the Amazon rainforest via precipitation

cycles.
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Figure 2: Left Increase (in %) from SCC to SCCDS when the Amazon rainforest is added to the dy-

namics system, under stochastic aggregate climate risk (left), under both stochastic aggregate climate

risk and idiosyncratic amazon risk (right). Right Share (in %) of each channel in this increase (scal-

ing, insurance & subsystem channels) under aggregate climate risk (left) and both aggregate climate

and idiosyncratic amazon risks (right).

A back of the envelope calculation helps to understand the magnitude these percentages might

represent. Using a 2% discount rate, U.S. Environmental Protection Agency recently suggested to use

a $190 per tCO2 social cost of carbon (Agency, 2022). Global CO2 emissions in 2022 are estimated

at 36.4GtCO2 (Friedlingstein et al., 2023). This means that if the increase from SCC to SCCDS under

both stochastic risks represents 15% of the standard SCC, applying this increase to the universe of

CO2 emissions would raise around 1.0374 trillion dollar for 2022 only. Even the insurance channel,

which represents only 0.6% of these 15% increase, accounts for nearly 6 billions dollar yearly, i.e.

five time the $1.2 billion pledges from Lula da Silva for the Amazon Fund in January 2023. The

wedge between SCC and SCCDS could be leveraged at the global scale to finance coasian mecha-

nisms at the regional scale to prevent deforestation and forest degradation. This regional management
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could indeed decrease the subsystem channel and reduce risk over the future dynamics of the Amazon

rainforest. This global redistribution would have a double dividend property: it would reduce both

the negative externality of carbon emissions at the global scale and the global and regional risk over

the dynamics of the rainforest.

Explicitly introducing the dynamics of a climate subsystem such as the Amazon rainforest into

stochastic climate-economy modelling has an impact on optimal global climate policy. To assess

the value of a hectare of Amazonian forest focusing only on its use value as a carbon stock, we

first need to quantify the amount of carbon stored in that hectare Σ. Once this quantity is known,

it must be multiplied by the standard social cost of carbon. Then, it should be multiplied by the

increase implied by the stochastic modeling of the dynamic of the subsystem estimated above, i.e.

Σ ∗SCC ∗ 1.15 = Σ ∗SCCDS. But that is not all. Explicitly introducing the dynamics of a climate

subsystem such as the Amazon rainforest into stochastic climate-economy modelling also has an im-

pact on the optimal management of the subsystem’s resilience over time.

2.3.2 Optimal regional rainforest management - SCDS

We compute the social value of the dynamics system (SCDS) under expected utility as a share of

standard social cost of carbon SCC under aggregate climate risk but without the amazon rainforest

included in the dynamics, i.e. the standard measure of the SCC in the literature. On Figure (3), we

plot the share for two specifications. On the left, we plot this share under standard aggregate climate

risk. On the right, we plot the share under both standard aggregate climate risk and idiosyncratic

amazon risk. For each specification, we report the share of the two channels analytically depicted in

equation (10) in the SCDS.

Figure (3) yields two key results. First, SCDS represents a significant share of the SCC. Under

aggregate climate risk, the SCDS represents 15.77% of the SCC. Under both aggregate climate risk

and idiosyncratic risk over the dynamics of the rainforest, this share increases to 15.95%, a 1.1%

increase with respect to the specification with aggregate climate risk only. Second, what matters

most in the SCDS is the subsystem channel, i.e. the impact of a marginal change in the subsystem’s

state on the continuation value of our program, which includes all future risks over the dynamics

of the forest and the welfare impacts of future possible carbon releases. Under aggregate climate

risk, the subsystem channel represents 58.2% of the SCDS. Under both aggregate climate risk and
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idiosyncratic subsystem risk, the subsystem channel represents 57.6% of the SCDS.
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Figure 3: Left Share (in %) of SCDS in the SCC under expected utility with stochastic climate risk

under deterministic and stochastic specifications for the rainforest, i.e. without (left) and with (right)

idiosyncratic amazon risk. Right Share (in %) of each channel in the SCDS (temperature and sub-

system channels) under aggregate climate risk (left) and both aggregate climate risk and idiosyncratic

amazon risk (right).

This has large implications for regional forest management. Indeed, when evaluating the value

of a marginal hectare of rainforest in regional cost-benefit analysis, for instance for infrastructure

projects, SCDS should be accounted for. In addition to the direct value of the carbon contained in this

hectare of forest, which should be valued at the SCCDS level as argued above, we need to take into

account the marginal value of the dynamic system on the continuation value, i.e. the sub-system chan-

nel of the SCDS. Indeed, choosing to deforest in one place releases carbon, but also has an impact on

the forest’s future carbon release dynamics and the probability of its dieback. Explicitly introducing

the dynamics of a climate subsystem such as the Amazon rainforest into stochastic climate-economy
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modelling has an impact on optimal regional subsystem management via the valuation of an hectare

of rainforest. To assess the value of a hectare of Amazonian forest focusing only on its use value as a

carbon stock, we first need to quantify the amount of carbon stored in that hectare. Once this quantity

Σ is known, it must be multiplied by the standard social cost of carbon. Then, it should be multiplied

by the increase implied by the stochastic modeling of the dynamic of the subsystem estimated above,

i.e. Σ∗SCC ∗1.15. Finally, it should be scaled by the impact of a marginal change in the subsystem’s

state on the future of the rainforest, i.e. Σ∗SCC ∗(1.15+(0.1595∗0.576)) = Σ∗SCC ∗1.24, which

means a 24% increase in the valuation of this hectare of rainforest with respect to a standard valuation

using the stochastic SCC under standard aggregate climate risk without the explicit modelling of the

rainforest.

Revolution in satellite data has allowed a quick development in dynamic discrete choice methods

that are useful tools to evaluate counterfactual policies (Araujo et al., 2020). While this granularity in

satellite data is very complementary to our approach and important from a descriptive point of view in

order to compute carbon stocks at the finest resolution or to monitor human disturbances on the forest

in real time, it does not allow for prospective modelling of the system’s dynamics. Although some

early warning signals of critical transitions such as tipping points have been identified (Scheffer et al.,

2009), they are not yet sufficiently developed for real-time monitoring. Furthermore, it is not certain

that it is not too late once these signals are readable as the tipping point might already have been

triggered irreversibly: Biggs et al. (2009) suggest that research should focus on defining critical indi-

cator levels rather than detecting change in the indicators. We are in line with this robust approach to

possible ecological regime shifts and SCDS might be operationalized to work in this direction within

a global welfarist framework.

2.3.3 Robust social choice

Finally, for robustness, we look at the extent to which our attitude towards the large risks and

uncertainties over the future dynamics of the rainforest can change the amplitude of our results on the

SCCDS and SCDS under expected utility. We disentangle preference over time, risk and uncertainty

(θ, γ and µ) under perturbations to the rainforest. Various parameter values are used in the literature

either with positive or normative approaches (Ju and Miao, 2012; Cai and Lontzek, 2019). Our
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approach is close to Berger et al. (2017): we assume as a benchmark5 a setting with low-aversion

θ = 1.5, γ = 2, µ = 2. The sensitivity is done on a high-aversion scenario with γ = 10, µ = 10

while holding preference for intertemporal substitution constant. Under robust control, switching

attitudes from low to high aversions yields an increase of about 40% for the SCCDSSA and 60% for

the SCDSSA.
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Figure 4: Increase (in %) from low to high risk aversion parameter values under smooth

ambiguity when the amazon rainforest is accounted for (Top) SCDSSA (Down) SCCDSSA.

In our robust criterion, we abstract from learning as in Millner et al. (2013) and Berger et al.

(2017). A dynamic learning model under uncertainty would require updating the weights given to

each model. Even if is not clear how and in which direction scientific progress will allow to reduce

uncertainty, our estimates under uncertainty aversion should be considered as upper bounds of the

possible increases in the SCCDS brought by uncertainty. Meanwhile, a careful study of learning

under a tipping risk (Rudik, 2020) shows that learning can backfire and reduce welfare by erroneously

5We cannot directly compare robust social choice policy programs to expected utility under risk has they

do not yield the same deterministic paths.
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ruling out pending catastrophe. Our upper bound ruling out learning could be more in line with a

robust approach to decision-making under uncertainty.

Conclusion

Modeling stochastic and debated interactions between climate change, the macroeconomy and

Earth subsystems with a reduced-form geophysical reprentation of the dynamic subsystem is insight-

ful for decision-makers, both at the global scale for climate policy and at the regional scale for man-

agement of the subsystem. Using value function decomposition, we show that the social cost of

carbon is increased from SCC to SCCDS by the endogenous subsystem through three main channels:

a scaling of the standard channel driving optimal policy by the sign and magnitude of the feedback

the subsystem brings to climate change, an insurance channel that measures how subsystem idiosyn-

cratic risk affects aggregate climate risk on intertemporal welfare, and the impact a marginal carbon

emissions has on intertemporal welfare through its effect on the future dynamics of the subsystem.

Thus, the subsystem has an impact on optimal climate policy that cannot be reduced to the expected

value of the feedback it has on climate change. At the regional scale, the explicit reduced-form geo-

physical representation of subsystem’s own dynamics which is nonlinear and partly beyond direct

control of the decision-maker allows to study the social cost of the dynamic system SCDS, i.e. the

cost of a marginal decrease in subsystem’s state because of its reduced ability to self-perpetuate. Our

methodological approach could be operationalized for public decision-making regarding other cli-

mate subsystems whose fate is debated.

For illustration, we apply our general framework to the fierce debates over the fate of the Amazon

rainforest. We use a stochastic climate-economy model with aggregate climate risk over transcient

climate response to cumulative emissions and add a stylized reduced-form geophysical dynamics of

the rainforest with idiosyncratic stochastic risk over the dynamics of the forest. We move away from

the modeling of a generic catastrophe to represent it as an emergent property of the dynamic system.

We calibrate the dynamics explicitely and take into account both stochastic risk within climate models

and scientific uncertainty over various climate models in our decision criterion. Our approach yields

three key results. First, the social cost of carbon should include the impact that a marginal increase in

cumulative emissions at the global scale has on the dynamics of the rainforest. This includes both a

scaling of current policy by the carbon releases from the Amazon rainforest under changing climate
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and an insurance channel because the carbon releases have not the same social value depending on

the states of the world where they occur. This also includes the marginal value of a carbon emis-

sion on intertemporal welfare through its impact on future subsystem’s dynamics. Second, the social

value of the Amazon rainforest as a carbon stock cannot be reduced to the amount of carbon it con-

tains: the SCDS matters too, as it represents a significant share of the SCC under expected utility and

standard aggregate climate risk. Third, risk and scientific uncertainties are key components of these

subsystems: decision-making should account for them in the decision process rather than averaging

over deterministic realizations. This means first and foremost taking risk seriously in our modeling

approch, with global solution methods and multiple sources of risk interacting. Finally, it means

offering the general public decision-making tools that are flexible in terms of attitudes to scientific

risk and uncertainty, such as the smooth amiguity criterion. Both SCCDS and SCDS increase sharply

with these preference parameters under our robust social choice criterion.

Our results yield three key policy insights at the global scale, from global to regional scales and

at the regional scale respectively. First, decision-makers should use SCCDS instead of SCC, i.e.

augment the SCC from the impact of a marginal emissions on the Amazon rainforest, that further

releases carbon. Emitters around the world should pay around 15% per tCO2 for the welfare impact

of their emissions on the rainforest. Second, the wedge between SCCDS and SCC, i.e. between the

SCC without endogenous Amazon rainforest and the SCCDS with this additional feedback, could

be leveraged around the world and used to finance payment for ecosystem services for the preser-

vation of the rainforest in a double dividend fashion. These mechanisms are the cornerstone of the

UN-sponsored REDD+ strategy. The wedge could address the challenge of financing these coasian

subsidies for not deforesting by clearly identifying who is responsible for what in this subsystem’s

dynamics whose fate is not entirely under the control of the governments of the territory in which

they are located. Indeed, when multiplied by the universe of carbon emissions, a 15% increase in

the SCC at the global scale represent an amount far larger than any other source of funding proposed

so far. Third, the social value given to an hectare of rainforest should include not only the standard

social cost of carbon SCC, but the sum of the amazon-augmented social cost of carbon SCCDS and

the subsystem channel of the social cost of the dynamic system SCDS. This subsystem channel of

the SCDS represents around 9% of the standard SCC obtained under aggregate climate risk. Indeed,

a marginal decrease in the forest cover has a first-order welfare impact, as it releases carbon, but also

a second-order impact on the future dynamics of the subsystem as a whole. Our theoretical work can
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therefore be operationalized in local cost-benefit analysis of deforestation and be used in complement

to the significant progress in the quantification of carbon stored at the finest scale via satellite obser-

vation. We show that, considering only its value as a carbon stock, the value of a hectare of rainforest

is 24% higher than the value currently used in cost-benefit analysis. This SCDS is also interesting to

differentiate between different subsystems and understand how these differences bring differences in

terms of optimal policy at the global and the regional scales. The dynamics of the Amazon rainforest,

which includes a feedback effect, is different from other tropical rainforests (Staal et al., 2020): feed-

back dynamics are weaker for Congo rainforest and southeast Asian rainforests are not vulnerable to

forest-rainfall feedbacks because of their maritime climate zones. Incorporating an explicit geophys-

ical dynamics of the subsystem also matters for risk ranking among various climate subsystems.

Our work has limitations. Some limitations are standard in this literature, for instance the simple

representation of the macroeconomy. Two key limitations are related to our specific modeling choices

regarding the rainforest: on its dynamics and on its valuation. First, there are more uncertainties at

stake with the future of the Amazon rainforest than the one we consider. Here, we have tried to grasp

some of this deep uncertainty to show how it influences our results. Second, the main limitation and

way forward would be to include other values to the subsystems. For the Amazon rainforest, we focus

on the use value of the rainforest as a global carbon stock and abstract from other values: direct use

values e.g. timber products, indirect use value e.g. water and nutrient recycling, option and existence

value, rights of the indigenous people, intrinsic value. Doing so, we could study how subsystem’s

idiosyncratic risk interacts with standard macroeconomic risk at the continental scale, for instance

when the rainforest has other externalities such as health impacts that may affect economic growth at

the continental scale. Integrating all these values is left for future research.
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A Appendix

A.1 Analytical decomposition - SCC

Expected utility A second-order Taylor expansion around z := (Et(At+1),Et(Tt+1)) writes:

Et

(
∂Ut+1

∂Tt+1

)
≈ ∂Ut+1

∂Tt+1

∣∣∣∣
z

(zeroth-order)

+
∂2Ut+1

∂2Tt+1

∣∣∣∣
z

Et (Tt+1 − Et(Tt+1)) (first-order)

+
∂2Ut+1

∂Tt+1∂At+1

∣∣∣∣
z

Et (At+1 − Et(At+1)) (first-order)

+
1

2

∂3Ut+1

∂2Tt+1∂At+1

∣∣∣∣
z

Et [(At+1 − Et(At+1)) (Tt+1 − Et(Tt+1))] (second-order)

+
1

2

∂3Ut+1

∂2Tt+1∂At+1

∣∣∣∣
z

Et [(Tt+1 − Et(Tt+1)) (At+1 − Et(At+1))] (second-order)

+
1

2

∂3Ut+1

∂Tt+1∂2At+1
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z

Et [(At+1 − Et(At+1)) (At+1 − Et(At+1))] (second-order)

+
1

2

∂2Ut+1

∂3Tt+1
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z

Et [(Tt+1 − Et(Tt+1)) (Tt+1 − Et(Tt+1))]) (second-order)

(14)

The first-order terms are all zero. Indeed, the expectation passes through because the first part of

each first-order term is not random as well as the zeroth-order term. The last second-order term is

zero for the same reason. The second part of the first and the second second-order term correspond

to cov(Tt+1, At+1). The second part of the third second-order term is var(At+1). That yields:

Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
= Et

(
∂Ut+1

∂Tt+1

)
Et

(
∂Tt+1

∂St+1

)
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(
∂Ut+1

∂Tt+1
;
∂Tt+1

∂St+1

)
(15)
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∣∣∣∣
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1

2
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∂Tt+1∂2At+1

∣∣∣∣
z

var(At+1)︸ ︷︷ ︸
PC

 (16)

We want to decompose all future components of SCCDS. Starting from equation (1) that defines

optimal policy under expected utility. We assume that we are at the optimum and simplify notations

for the expectations. There is no decay, so that we have:

V a
1,t = Et

(
∂Ut+1

∂Tt+1

∂Tt+1

∂St+1

)
= Et

(
u′S [ct+1]

)
+ δV a

1,t+1V
b
1,t+1 + δV c

1,t+1 + δV2,t+1 (17)

V a
1,t = Et

(
u′S [ct+1]

)
+ δV c

1,t+1 + δV2,t+1 + δV a
1,t+1V

b
1,t+1 (18)

Eventually advancing this equation and inserting it in itself yields:

V a
1,t = Et

(
u′S [ct+1]

)
+ δV c

1,t+1 + δV2,t+1 + δV b
1,t+1

(
Et

(
u′S [ct+2]

)
+ δV c

1,t+2 + δV2,t+2 + δV a
1,t+2V

b
1,t+2

)
(19)
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Assuming that the shadow value of carbon concentration increase ∂U/∂S converges to 0 over our

large time horizon and along an optimal path, we repeatedly avance and insert this equation in itself.

Then, inserting this in equation (7), and repeating the operation, yields equation (9) that includes all

future components.

Smooth ambiguity One can extend the conclusion made here under expected utility to our

smooth ambiguity criterion. The SCCSA and SCCDSSA write:

SCCSA
t =

δ

u′c(ct)

∂Vt+1

∂Tt+1

∂Tt+1

∂St+1
(20)

SCCDSSA
t =
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where at(x) = (u ◦ h−1)′Eχt

(
(h ◦ v−1)Eπt(v ◦ u−1)(x)

bt(x) =
(
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We use standard operations on expectations:
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(22)

In other words, the channel derived under expected utility is scaled with:

atEχt (btEπt(dt))) =

(
Eχt

[
Eπt((1− θ)Vt+1)

1−γ
1−θ

] 1−µ
1−γ
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θ−γ
1−θ︸ ︷︷ ︸
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 (23)

The scaling does not affect the relative magnitude of the channels derived in equation (9) but the

concave transformation increases the SCCDS. Thus, the conclusion made under expected utility on

the relative magnitude of insurance in optimal policy applies under the smooth ambiguity criterion.

Note that the scaling equals one when µ = η = γ, which yields expected utility. It is well known that
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the dynamic models of ambiguity aversion yield timing nonindifference (Strzalecki, 2013), i.e. pref-

erence for the timing of resolution of risk and preference for the timing of resolution of uncertainty.

The second line of equation (22) is the preference for temporal resolution of uncertainty and writes:

TRUt =
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Eχt
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] 1−µ
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(24)

This channel increases (decreases) the SCCSA and SCCDSSA when µ ≥ (≤)θ, i.e. when the

planner has preference for early (late) resolution of uncertainty, which is the case for all values of µ

and θ explored. The third line of equation (22), already depicted in Lemoine and Rudik (2017) under

Epstein-Zin-Weil preferences, is preference for temporal resolution of risk (see also Lemoine (2021))

and writes:

TRRt =

(
Eχt

[
Eπt((1− θ)Vt+1)

1−γ
1−θ

] 1−µ
1−γ

)µ−θ
1−µ

Eχt

[(
Eπt [(1− θ)Vt+1]

1−γ
1−θ

) γ−µ
1−γ

cov

(
([1− θ]Vt+1)

θ−γ
1−θ ;

∂Vt+1

∂Tt+1

∂Tt+1

∂St+1

(
1 +

∂St+1

∂At+1

∂At+1

∂St

)
+

[
∂Vt+1

∂At+1

∂At+1

∂Tt

∂Tt
∂St

]]
(25)

This channel increases (decreases) the SCCSA and SCCDSSA when γ ≥ (≤)θ, i.e. when the

planner has preference for early (late) resolution of risk, which is the case for all values of γ and θ

explored here.

A.2 Analytical decomposition - Social cost of the dynamic subsystem

Smooth ambiguity Under this social choice criterion, the SCDSSA writes:

SCDSSA
t =

δ

u′c(ct)
atEχt

btEπt

dt


Channels from main text︷ ︸︸ ︷(
∂Vt+1

∂Tt+1

∂Tt+1

∂St+1

∂St+1

∂At+1

)
+ Et

(
∂Vt+1

∂At+1

)

 (26)

The same interpretation as equation (22) above applies to the SCDSSA.

A.3 Resolution of the model

Simplicial Chebyshev Approximation. We use a simplicial complete Chebyshev approximation

in the three-dimensional state space. Denote a d-dimensional hyperrectangle state space [xmin, xmax]

as {x = (x1, ..., xd) : xmin,j ≤ xj ≤ xmax,j , j = 1, ..., d} with d = 3 and where xmin,j and xmax,j

are lower and upper bounds of state variable xj . The state variables are A, T and K (from which Y

can be deduced). The time-dependent approximation space is defined around a deterministic growth

path derived from Ramsey formula. This adaptive grid allows to use fewer collocation points than on

a standard hyperrectangle grid. We do not use a complete Chebyshev approximation as it assumes
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symmetric approximation in each dimension. In our multidimensional problem, the value functions

have higher curvature in the forest and temperature dimensions because of the feedback effect, while

savings rate is fixed and capital dynamics smooth: we use degree-3, degree-4, degree-6 interpolation

for capital, temperature and Amazon respectively. We do not have a proper kink so we do not use

adaptive sparse grids (Brumm and Scheidegger, 2017) and stick to a tensor product grid that can

handle our curvature. The approximation writes:

V̂ (x,b) =
∑

α≥0,
∑d

j=1 αj/nj≤1

bαΦα(x) (27)

where nj is the maximal degree in dimension j and Φ the product of one-dimensional Chebyshev

basis functions ταi(Zi(xi)) = cos(αicos
−1(Zi(xi)) where we have that Zj(xj) =

2xj−xmax,j−xmin,j

xmax,j−xmin,j

for j = 1, ..., d. Φ writes:

Φα(x) =
d∏

i=1

ταi(Zi(xi)) (28)

Chebyshev nodes To get a not-overfitted approximation, the number of nodes, m, should not be

less than the number of unknown coefficients, bα. Choosing tensor-grids may lead to another level of

curse of dimensionality. We chose Chebyshev nodes and let mj = nj +1, so that the number of grids

in dimension j is equal to one plus the maximal degree of Chebyshev approximation in dimension

j. For our d-dimensional problem in the state space [xmin, xmax], there are m1 ∗ m2 ∗ ... ∗ md

approximation nodes with the tensor grid and the values of Chebyshev nodes in dimension j are :

xi,j = (zi,j + 1)(xmax,j − xmin,j)/2 + xmin,j (29)

with zi,j = −cos((2i − 1)π/(2mj)) for i = 1, ...,mj . Furthermore, we break the ‘curse-of-

dimensionality’ on tensor grids using CPU parallel computing as the interpolation can be done in-

dependently between the different approximation nodes.

Terminal value The calculation is done on a finite horizon (T = 500 years) as an approximation

of the infinite program. The terminal value is defined as the sum of all the period utilities from

time T to infinity. The assumption made is that the consumption will grow for a constant capital per

efficient capita and total abatement, with a deterministic path for the capital derived from Ramsey.

The terminal constraint uses a modified discount factor (Barr and Manne, 1967). The choice of the

terminal value does not affect the program : a 10% increase in the terminal value does not significantly
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affect the optimal path. It writes:

TV F =

(
1− tstep

1− δ(1 + g)θ

) 1
θ

u(c) (30)

with c the consumption for constant capital per efficient capita and total abatement, δ the discount

rate, g the growth rate of labour productivity from the last period,

We use deforestation rates from Aguiar et al. (2016): (km2 / year) decreasing to 3900 (2020) then

to 1000 (2025) and stabilizing until 2050 (scenario A), decreasing to 3900 (2020) and stabilizing until

2050 (scenario B), increasing to 15000 (2020) and stabilizing until 2050 (scenario C). The calibration

of our dynamics is a two-step procedure. First, we calibrate externally the maximum impact of local

temperature changes on tree carbon losses through droughts ϵ̄. We use projections from climate

models at a fine spatial resolution to derive a relationship between changes in local temperatures and

changes in a drought index over the Amazon basin, the maximum cumulative water deficit (MCWD)

anomaly with respect to an historical baseline. We use past observations to derive a link between

MCWD and carbon losses. Then, we calibrate the whole distribution of ϵ̃ within the support [0 ; ϵ̄]

internally so that the dynamics of our system matches the expert assessments from Kriegler et al.

(2009) on a possible tipping point. A taste of the uncertainty between models appear on the graph

below:

A.5 Calibration

A.5.1 External calibration

Step 1 - Prepare and match datasets We use an Amazon shapefile (Silva-Souza and Souza,

2020) at a 0.5° x 0.5° spatial resolution and calculate for each cell the MCWD anomaly observed

along three representative concentration pathways (RCPs 2.6, 6.0, 8.5) in comparison with the his-

torical baseline (1984-2004 as in Phillips et al. (2009)). We use projections from climate models

taken from the Inter-Sectoral Impact Model Intercomparison (ISIMIP) for local precipitations and

temperatures. For each RCP, we use fixed year-2005 land use, nitrogen deposition and fertilizer input

to avoid double counting of human direct influences on the forest, as we already take into account

deforestation and degradation. We use the estimates taken from one type of model: the hydrological

model MATSIRO. We use all climate impact models available as the main climate uncertainty on

future droughts stems from the differences between these models: GFDL-ESM2M, HadGEM2-ES,

IPSL-CM5A-LR, MIROC5. Two other types of models could be used: dynamic global vegetation
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Figure 5: Spatial cumulative distribution at 0.5° resolution of maximum cumulative water deficit

anomaly with respect to historical baseline for RCP 8.5 over the Amazon rainforest. Left shows that

over all climate models, the average MCWD anomaly shifts to more extreme and frequent droughts

from 2010-2050 to 2050-2090. Right shows how the distribution of average MCWD anomaly over

2050-2090 depends on the climate model used

models and land surface models. But we do not have RCP trajectories for the dynamic global veg-

etation model and we do not have historical baseline for CLM45: we would have to use fixed-2005

socioeconomic scenarios for the historical baseline. Furthermore, land-surface models are not appro-

priate for the study of the impact of droughts on the rainforest and the vegetation models assume fixed

tree mortality while we want to use historical data (Phillips et al., 2009) to describe the link between

droughts and carbon losses.

We transform precipitation data from kg/m−2/s−1 to mm2/month. With P the precipitation level

in mm2/month, the cumulative water deficit (CWD) writes6 (Papastefanou et al., 2020),with m the

months, k the grid cells (m = 1,..., 12) and i the climate model used:

CWDk,m,i = CWDk,m−1,i,RCP + Pk,m,i − 100 if Pk,m,i,RCP < 100 (33)

CWDk,m,i = 0 if Pk,m,i > 100 and CWDk,0,i = 0 (34)

We calculate MCWD for each year (y) from october n to september n+1 for each cell k. We have:

6A fixed value for evapotranspiration (ET) of 100 mm per month is used. When monthly rainfall is below

100 mm, the forest is under water deficit.
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MCWDk,y,RCP,i = min(CWDk,m,RCP,i), m = 1, ..., 12. We obtain the MCWD anomaly, in com-

parison with the mean values taken from the baseline calculated at the cell level: MCWDanomaly
k,y,RCP,i =

MCWDk,y,RCP,i −MCWDbaseline
k,RCP,i. We use local surface temperature data from all climate impact

models along the three RCP and match it to the data on MCWD anomaly at the pixel level. We

calculate the mean average local surface temperature from october n to september n+1. We translate

the MCWD anomaly to carbon losses. We take observations from previous literature (Phillips et al.,

2009) to derive a simple link c (c ≈ 0.05 tC/ha/y/mm2 MCWD anomaly) between yearly MCWD

anomaly (in mm2) and the carbon losses observed (in tC / ha / year). The carbon losses observed de-

pend on the size of the pixel, but the difference in size is minor (< 3%) and we focus on the difference

in carbon stored. We take data from EarthData (NASA) for the carbon storage spatial heterogeneity

(Baccini et al., 2012). We scale each Ci by the ratio of the carbon stock of this pixel i to the mean of

the carbon stock in every pixel to take into account heterogeneity in the distribution of carbon stored.

Step 2 - Econometrics model selection and tests We have a balanced panel dataset with yearly

projections of carbon losses and local temperatures from october 2006 to september 2099 (T=93)

for each location (N depends on the climate impact model used but overall, N >> T). The basic

OLS regression model does not consider heterogeneity across locations or across years. We use fixed

effects models as the Durbin-Wu-Hausman test is rejected for each model: while the fixed effect

specification has a cost in terms of degrees of freedom, using random effects modelling would come

with the too heavy assumption that the unobserved heterogeneity of the model is not correlated with

the regressors. We check if time fixed effects are needed with Lagrange multiplier tests and F test: we

reject the null hypothesis and add T-1 (to avoid perfect multicollinearity) time fixed effects to our fixed

effects panel specification. Our specification limits the probability of coefficients being driven by

omitted variables. We do not differentiate the data as stationarity is not a problem in our panel dataset

with time fixed effects and N >> T. We are not preoccupated by simultaneity as local temperatures

are mainly driven by global cumulative emissions stock as long as the vegetation cover is not fully

depleted. We test homoskedasticity and serial correlation with Breusch-Pagan and Breusch-Godfrey

lagrange multipliers tests. We reject the null hypothesis and find evidence of heteroskedasticity and

serial correlation: we might use robust covariance matrix estimators à la White for our standard

errors but first need to test for cross-sectional dependence with Pesaran’s and Breusch-Pagan’s tests.

As expected (spatial data), we reject the null hypothesis that residuals are not correlated so that there

is cross-sectional dependence in each model, which might bias our coefficients. Furthermore, we
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use Driscoll and Kraay (1998) standard errors to account for this dependence structure. We also add

regional fixed effects to account for heterogeneity in the vegetation. We use Silva-Souza and Souza

(2020) woody plant regionalization into 13 subregions based on k-means partitioning. Let C be the

carbon losses (in tC / ha / y), X the local temperature at the pixel level, u the error term, i the notation

for our geo-coded entity, t the notation for time, r the Silva-Souza and Souza (2020) subregions. β is

our coefficient of interest, α, δ and ζ vectors of location, time and region fixed effects respectively.

We estimate the following:

Cj
i,r,t = βjXj

i,r,t + αj
i + δjt + ζjr + uji,r,t (35)

We have our coefficients of interest β̂j for each model j that gives how a 1°C increase in local

temperature translates into a change in carbon stored (in tC / ha / year).

Specification Climate model Coefficient Standard Errors [robust] t-value [robust]

FE HADGEM -1.1271 0.0031 [0.0226] -365.806 [-49.8816]

GFDL -2.7006 0.0056 [0.025] -484.8025 [-108.1676]

IPSL -0.4885 0.0043 [0.0133] -114.0374 [-36.7257]

MIROC -1.1996 0.0036 [0.0225] -332.0498 [-53.2061]

FE & year FE HADGEM -1.4039 0.0048 [0.0288] -293.4842 [-48.7659]

GFDL -3.0708 0.0067 [0.0262] -454.942 [-117.3824]

IPSL -0.7977 0.007 [0.0204] -113.5831 [-39.1795]

MIROC -1.6436 0.0049 [0.0311] -335.25 [-52.9338]

FE & regional FE HADGEM -1.1271 0.0031 [0.0563] -365.806 [-20.0358]

GFDL -2.7006 0.0056 [0.1559] -484.8025 [-17.3256]

IPSL -0.4885 0.0043 [0.1107] -114.0374 [-4.4126]

MIROC -1.1996 0.0036 [0.0892] -332.0498 [-13.45]

FE, year & regional FE HADGEM -1.4039 0.0048 [0.0048] -293.4842 [-293.4842]

GFDL -3.0708 0.0067 [0.0067] -454.942 [-454.942]

IPSL -0.7977 0.007 [0.007] -113.5831 [-113.5831]

MIROC -1.6436 0.0049 [0.0049] -335.25 [-335.25]

We multiply this coefficient by the size (≈ 705 million ha) of the forest (Souza-Rodrigues, 2019)

and by the number of years per period (5 years) and express it as a share of the carbon stored in the

forest at initial time that can be lost (75GtC (Armstrong McKay et al., 2022)). This coefficient gives

the upper bound of the mean additional share of carbon stored in the rainforest that is released per

period because of droughts for a one degree increase in local temperature in climate model j. Our

coefficients ϵj are taken from observations of the 2005 drought (Phillips et al., 2009), one of the most

severe droughts observed over the Amazon so far. Thus, we assume that ϵ̄j are higher estimates of the

possible impact of droughts. We assume that on a given period, the impact of droughts on the carbon
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storage follows a beta distribution of unknown parameters αs and βs with support [0 : ϵ̄j ].

A.5.2 Internal calibration

Data processing We use expert assessments from Kriegler et al. (2009) to calibrate our global

dynamics: we calibrate the growth rate g0, the feedback effect Υ and the parameters αs and βs of the

beta distribution of stochastic droughts ϵ̃ to recover the same probabilities of tipping along three RCP.

We want to make sure that our dynamic system is approximately in line with these expert elicitations.

In the low temperature corridor, the central weighted estimate from core experts in Kriegler et al.

(2009) is a probability of 24% of tipping. In the medium temperature corridor, their central estimate

is a probability of 49% of tipping. In the high temperature corridor, the central estimate is a proba-

bility of 67%. The temperature corridors used by Kriegler et al. (2009) are wide, and we assume fair

approximations for their ‘low’, ‘medium’ and ‘high’ temperature corridors are the Shared Socioeco-

nomic Pathways SSP4-3.4, SSP4-6.0, SSP5-8.5. These SSP are available in IPCC AR6 (Smith et al.,

2021): more specifically, we use extended SSP as we need data until 2200. The data is available as

effective radiative forcing (in W.m–2) time series. We use a simple two-layers box model described

in IPCC AR6 (Smith et al., 2021) to translate this data to global average surface temperature:

C
d

dt
∆T = ∆F (t) + α∆T − ϵγ(∆T −∆Td) (36)

Cd
d

dt
∆Td = γ(∆T −∆Td) (37)

where ∆T (°C) is the temperature change of the surface components of the climate system, ∆Td

(°C) is the temperature change in the deep ocean layer, C and Cd are the effective heat capacities

for the surface and deep layers, ϵ is the efficacy of the deep ocean heat uptake and γ is the heat

transfer coefficient between the surface and deep layer. We use the central estimates from IPCC for

the key parameters and abstract from uncertainty on these parameters7. We use Leduc et al. (2016)

regional transient climate response to cumulative emissions (2.0°C per TtC over the Amazon basin)

and the IPCC (Masson-Delmotte et al., 2021) best estimate for global transient climate response to

cumulative emissions (1.65°C per TtC) to have a simple mapping from global to regional temperature.

Jointly calibrate the parameters and distribution of ϵ Reasonable ranges for Υ, the temper-

ature difference between bare soil and forest, range from 3.98 (forest-to-pasture) to 7.06 (forest-to-

7C = 8.1 ± 1 W.yr.m−2 °C−1, Cd = 110± 63 W.m−2 °C−1, γ = 0.62 ± 0.13 W.m−2 °C−1, ϵ = 1.34 ± 0.41,

α = -1.33 ± 0.5. We calculate the cumulated sum starting from 1750.
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cropland) in Silvério et al. (2015). Ritchie et al. (2021) use 5. The distribution is chosen so that the

expected value of the mean yearly drought impact over a period is between one half and one fifth of

the value of the impact calibrated from the 2005 extreme drought in Phillips et al. (2009). Further-

more, we assume αs and βs below 1 to model situations where observations are either close to the

upper bound or the lower bound and intermediate values are less likely. This seems reasonable as

these extreme droughts seem to occur every five years as observed in the past twenty years, either

associated with positive sea surface temperature anomalies in the tropical Atlantic (2005, 2010) or

with strong El Niño events (1997/98, 2015/16). Ritchie et al. (2021) use a perturbation rate of 0.2

and a growth rate of 2 so we keep the ratio constant with our perturbation rate ϵ to seek values for

which the dynamics fits with experts views. Using the inverse of the cumulative distribution function

of our beta distribution of unknown shape αs and βs, we give the values of ϵlow,ϵmedium and ϵhigh

that corresponds to the expert probabilities. Then, along the three SSP4-3.4, 4-6.0, 5-8.5, we calibrate

g0, Υ, αs, and βs, so that in 2200, the dynamic system experiences a dieback for ϵlow + δ (same for

ϵmedium and ϵhigh) but no dieback for ϵlow − δ (same for ϵmedium and ϵhigh), with δ± 1%. There is a

large, potentially infinite number of solutions. Arbitrarily, coefficients are taken to one decimal only

and find the ensemble of combinations for which the criteria for convergence are respected. We pick

one of the combinations. Our central estimate is: g0 = 0.49, αs = 0.36, βs = 0.32, Υ = 6. The

distribution for ϵ is given in Figure 6:
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Figure 6: Cumulative distribution function of ϵ̃ with red mean E(ϵ) ≈ 0.0431 and blue

median P(ϵ > 0.0462) = 50%.
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A.6 Consistency of the coefficients

We run a simulation (1000 paths) of our dynamics for the carbon stored in the rainforest, including

all the perturbations, along various extended concentration pathways in Figure (7). We give the mean

total carbon net losses (in GtC) for different temperature increases (in °C), with (left) and without

(middle) the tipping risk. Finally, we give the same path but under the assumption made in our model

that, as there is scientific uncertainty, there is a 50% chance of tipping risk (right). After 2200, we

assume that the carbon stored in the forest remains constant: the carbon losses are permanent. In our

model, there is no SSP (even the most extreme one) for which there is a dieback of the rainforest

before 2100 under deforestation and degradation scenarii.
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Figure 7: Time horizon Mean cumulative carbon losses (in GtC) from the Amazon rainforest

along various extended concentration pathways (in °C) from 2000 to 2200 under no tipping risk (A),

a tipping risk (B), and in our model (C).

We give the phase diagrams of our dynamic system under no tipping risk and under a tipping risk.

The diagrams give for various values of the stochastic impact of temperatures on the dynamics of

the rainforest ϵ, over time, and for different scenarii, the change in forest cover with respect to initial

period. A dieback of the forest occurs by 2200 only for carbon-intensive scenario that are usually

not optimal (so, these scenarii will not occur in our optimized framework), for a tipping risk, and for

large values of the impact of global temperatures on the dynamics of the rainforest.
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--- title: plotly header-include: | head: |2+ background-color: white ---

Figure 8: Phase diagram. Dynamics of the forest under no tipping risk for various ϵ̃ and for a low,

medium and a high temperature corridor. E(ϵ) ≈ 0.0431 and P(ϵ > 0.0462) = 50%.

--- title: plotly header-include: | head: |2+ background-color: white ---

Figure 9: Phase diagram. Dynamics of the forest under a tipping risk, i.e. Υ ̸= 0, for various ϵ̃ and

for a low, medium and a high temperature corridor. E(ϵ) ≈ 0.0431 and P(ϵ > 0.0462) = 50%.

A.7 Stochastic paths for some variables of interest

For three specifications of interest under expected utility, we plot the distribution of stochastic

paths until 2100 for temperature increases and forest stock. We also plot the distribution of stochastic

paths for abatement rate. These stochastic paths are taken from our optimized intertemporal programs

used for the computation of SCC, SCCDS and SCDS under expected utility. In all these graphs, the

bold line gives the mean of 100 stochastic paths and the gray area are for 5% and 95% paths.

• Specification 1: benchmark, with aggregate climate risk over transient response to cumulative

emissions, but no explicit representation of the amazon rainforest.

• Specification 2: first counterfactual, where there is aggregate climate risk and an explicit rep-

resentation of the amazon rainforest.
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• Specification 3: second counterfactual, where there is both aggregate climate risk and idiosyn-

cratic risk over the dynamics of the rainforest.
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Figure 10: Stochastic optimized paths under aggregate climate risk, without endogenous

amazon dynamics.
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Figure 11: Stochastic optimized paths under aggregate climate risk, with endogenous ama-

zon dynamics, without amazon idiosyncratic risk.

45



0.00

0.25

0.50

0.75

1.00

2020 2040 2060 2080 2100
Year

A
ba

te
m

en
t (

%
)

Abatement Over Time

1.0

1.5

2.0

2.5

2020 2040 2060 2080 2100
Year

T
em

pe
ra

tu
re

 in
cr

ea
se

 w
.r

.t.
 p

re
in

du
st

ria
l (

°C
)

Temperature Over Time

0.80

0.85

0.90

0.95

1.00

2020 2040 2060 2080 2100
Year

S
ha

re
 o

f A
m

az
on

 r
ai

nf
or

es
t e

xt
en

t w
.r

.t.
 to

 in
iti

al

Amazon extent Over Time

Figure 12: Stochastic optimized paths under aggregate climate risk, with endogenous ama-

zon dynamics, with amazon idiosyncratic risk.
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